3,279
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A new method for early detection of pancreatic cancer biomarkers: detection of microRNAs by nanochannels

, , &
Pages 2634-2640 | Received 09 Apr 2019, Accepted 29 Apr 2019, Published online: 20 Jun 2019

Reference

  • Park JL, Park SM, Kwon OH, et al. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis. 2014;35:3062–3068.
  • Varallyay E, Burgyan J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc. 2008;3:190–196.
  • Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA. 1996;93:13770–13773.
  • Cao C, Liao DF, Ying YL, et al. Detection of single oligonucleotide by an aerolysin nanochannels. Acta Chim Sinica. 2016;74:734–737.
  • Wang S, Zhao Z, Haque F, et al. Engineering of protein nanochannelss for sequencing, chemical or protein sensing and disease diagnosis. Curr Opin Biotechnol. 2018;51:80–89.
  • Manrao EA, Derrington IM, Laszlo AH, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanochannels and phi29 DNA polymerase. Nat Biotechnol. 2012;30:349–353.
  • Nicole R. Disruptive nanochannelss. Nat Methods. 2013;10:35.
  • Stefureac RI, Long YT, Kraatz HB, et al. Transport of α-Helical peptides through α-Hemolysin and aerolysin pores. Biochemistry. 2006;45:9172–9179.
  • Sutherland TC, Long YT, Stefureac RI, et al. Structure of peptides investigated by nanochannels analysis. Nano Lett. 2004;4:1273–1277.
  • Wang HY, Ying YL, Li Y, et al. nanochannels analysis of β-amyloid peptide aggregation transition induced by small molecules. Anal Chem. 2011;83:1746–1752.
  • Hu ZL, Du JH, Ying YL, et al. Single-molecule analysis of colorectal cancer-associated MicroRNAs via a biological nanochannels. Acta Chim Sinica. 2017;75:1087–1090.
  • Jasinski D, Haque F, Binzel DW, et al. Advancement of the emerging field of RNA nanotechnology. ACS Nano. 2017;11:1142–1164.
  • Smith JA, Braga A, Verheyen J, et al. RNA nanotherapeutics for the amelioration of astroglial reactivity. Mol Ther Nucleic Acids. 2018;10:103–121.
  • Haque F, Pi F, Zhao Z, et al. RNA versatility, flexibility, and thermostability for practice in RNA nanotechnology and biomedical applications. Wires RNA. 2018;9:e1452.
  • Wang G, Zhao Q, Kang X, et al. Probing mercury(II)-DNA interactions by nanochannels stochastic sensing. J Phys Chem B. 2013;117:4763–4769.
  • Wang L, Han Y, Zhou S, et al. nanochannels biosensor for label-free and real-time detection of anthrax lethal factor. ACS Appl Mater Interfaces. 2014;6:7334–7339.
  • Kamm RC, Smith AG. Nucleic acid concentrations in normal human plasma. Clin Chem. 1972;18:519–522.
  • Xu C, Haque F, Jasinski DL, et al. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett. 2018;414:57–70.
  • Pi F, Zhang H, Li H, et al. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery. Nanomedicine. 2017;13:1183–1193.
  • Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–838.
  • Lorio MV, Ferracin M, Liu CG. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–7070.
  • Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.
  • Yuan Y, Ru Q. Progress of microRNA detection technology and its application in laboratory medicine. Med Information. 2011;8:3809–3809.
  • Shi M, Qiu X, Fan H. Advances in plasma miRNA detection in tumor clinical applications. J Southeast Univ (Med Sci Edi). 2012;21:122–125.
  • Xiao CC, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136:26–36.
  • Zhao H, Shen J, Medico L, et al. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE. 2010;5:e13735.
  • Xueying Z, Linlin Z, Xuedong HAN, et al. Circulating miR-21 in plasm of patient with breast cancer. Modern Med J. 2012;40:133–137.
  • Ivica J, Williamson PTF, de Planque MRR. Salt gradient modulation of microRNA translocation through a biological nanopore. Anal Chem. 2017;89:8822–8829.
  • Ayub M, Stoddart D, Bayley H. Nucleobase recognition by truncated α-hemolysin pores. ACS Nano. 2015;9:7895–7903.
  • Howorka S, Cheley S, Bayley H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol. 2001;19:636–639.
  • Perera RT, Fleming AM, Peterson AM, et al. Unzipping of A-form DNA-RNA, A-form DNA-PNA, and B-form DNA-DNA in the α-hemolysin nanopore. Biophys J. 2016;110:306–314.
  • Japrung D, Henricus M, Li Q, et al. Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore. Biophys. J. 2010;98:1856–1863.
  • Long Z, Zhan S, Gao P, et al. Recent advances in solid nanopore/channel analysis. Anal Chem. 2018;90:577–588.
  • Gao P, Ma Q, Ding D, et al. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels. Nat Commun. 2018;9:4557.
  • Ding D, Pengcheng G, Qun M, et al. Biomolecule-functionalized solid-state ion nanochannels/nanopores: features and techniques. Small. 2019;undefined:e1804878.