2,599
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2123-2133 | Received 05 Mar 2019, Accepted 30 Apr 2019, Published online: 03 Jun 2019

References

  • O'Keefe M. Lessons from the rise and fall of the military AIDS hypothesis: politics, evidence and persuasion. Contemp Politics. 2012;18:239–253.
  • Safren SA, W. Otto M, Worth JL, et al. Two strategies to increase adherence to HIV antiretroviral medication: life-steps and medication monitoring. Behav Res Ther. 2001;39:1151–1162.
  • Prabhakar K, Afzal SM, Surender G, et al. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm Sin B. 2013;3:345–353.
  • Holmstock N, De Bruyn T, Bevernage J, et al. Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine. Eur J Pharm Sci. 2013;49:27–32.
  • Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–278.
  • Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.
  • de Oliveira MP, et al. Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (−/−) CF-1 mice. Pharm Res. 2005;22:1898–1905.
  • Sosnik A, Imperiale JC, Vázquez-González B, et al. Mucoadhesive thermo-responsive chitosan-g-poly (N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids Surf B Biointerfaces. 2015;136:900–907.
  • Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65:259–269.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.
  • Nahar M, et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Crit Rev Ther Drug Carrier Syst. 2006;23:259–318.
  • Satija J, Gupta U, Jain NK. Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit Rev Ther Drug Carrier Syst. 2007;24:257–306.
  • Gref R, Minamitake Y, Peracchia M, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600–1603.
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347
  • Sinha VR, Bansal K, Kaushik R, et al. Poly-ɛ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38:3484–3504.
  • Li Z, Tan BH. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C. 2014;45:620–634.
  • Li N, Zhao L, Qi L, et al. Polymer assembly: promising carriers as co-delivery systems for cancer therapy. Prog Polym Sci. 2016;58:1–26.
  • Taboada P, Velasquez G, Barbosa S, et al. Block copolymers of ethylene oxide and phenyl glycidyl ether: micellization, gelation, and drug solubilization. Langmuir. 2005;21:5263–5271.
  • Ribeiro MENP, Vieira ÍGP, Cavalcante IM, et al. Solubilisation of griseofulvin, quercetin and rutin in micellar formulations of triblock copolymers E62P39E62 and E137S18E137. Int J Pharm. 2009;378:211–214.
  • Crothers M, Zhou Z, Ricardo NMPS, et al. Solubilisation in aqueous micellar solutions of block copoly (oxyalkylene). Int J Pharm. 2005;293:91–100.
  • Gou M, Wei X, Men K, et al. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Cdt. 2011;12:1131–1150.
  • Gou M, Men K, Shi H, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3:1558–1567.
  • Feng R, et al. Novel star-type methoxy-poly (ethylene glycol)(PEG)–poly (ε-caprolactone)(PCL) copolymeric nanoparticles for controlled release of curcumin. J Nanopart Res. 2013;15:1748.
  • Zhao L, Li N, Wang K, et al. A review of polypeptide-based polymersomes. Biomaterials. 2014;35:1284–1301.
  • Xue B, Wang Y, Tang X, et al. Biodegradable self-assembled MPEG-PCL micelles for hydrophobic oridonin delivery in vitro. J Biomed Nanotechnol. 2012;8:80–89.
  • Mohanty AK, Jana U, Manna PK, et al. Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior. Prog Biomater. 2015;4:89–100.
  • Peng W, Jiang X-y, Zhu Y, et al. Oral delivery of capsaicin using MPEG-PCL nanoparticles. Acta Pharmacol Sin. 2015;36:139.
  • Danafar H, et al. Biodegradable m-PEG/PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin. Adv Pharm Bull. 2014;4:501–510.
  • Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci. 2019;10:728–739.
  • Derringer G, Suich R. Simultaneous optimization of several response variables. J Qual Technol. 1980;12:214–219.
  • Derakhshandeh K, et al. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients. Int J Nanomedicine. 2010;5:463.
  • Hamidi M. Simple and sensitive high‐performance liquid chromatography method for the quantitation of indinavir in rat plasma and central nervous system. J Sep Sci. 2006;29:620–627.
  • Khuroo T, Verma D, Talegaonkar S, et al. Topotecan–tamoxifen duple PLGA polymeric nanoparticles: investigation of in vitro, in vivo and cellular uptake potential. Int J Pharmaceutics. 2014;473:384–394.
  • Fatima S, Iqbal Z, Panda AK, et al. Polymeric nanoparticles as a platform for permeability enhancement of class III drug amikacin. Colloids Surf B Biointerfaces. 2018;169:206–213.
  • Shamsa ES, et al. Nanoparticles prepared from N, N-Dimethyl-N-Octyl chitosan as the novel approach for oral delivery of insulin: preparation, statistical optimization and in-vitro characterization. Iranian J Pharm Res. 2018;17:442.
  • Win KY, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–2722.
  • Derakhshandeh K, Hochhaus G, Dadashzadeh S. In-vitro cellular uptake and transport study of 9-nitrocamptothecin PLGA nanoparticles across Caco-2 cell monolayer model. Iranian J Pharm Res. 2011;10:425.
  • Waynforth HB, Flecknell PA. Experimental and surgical technique in the rat. Vol. 127. London: Academic Press; 1980.
  • Harms P, Ojeda S. A rapid and simple procedure for chronic cannulation of the rat jugular vein. J Appl Physiol. 1974;36:391–392.
  • Dadashzadeh S, Derakhshandeh K, Shirazi FH. 9-nitrocamptothecin polymeric nanoparticles: cytotoxicity and pharmacokinetic studies of lactone and total forms of drug in rats. Anti-Cancer Drugs. 2008;19:805–811.
  • Piazza RD, Brandt JV, Gobo GG, et al. mPEG-co-PCL nanoparticles: the influence of hydrophobic segment on methotrexate drug delivery. Colloids Surf A Physicochem Eng Aspects. 2018;555:142–149.
  • Scholes PD, Coombes AGA, Illum L, et al. The preparation of sub-200 nm poly (lactide-co-glycolide) microspheres for site-specific drug delivery. J Control Release. 1993;25:145–153.
  • Singh P, Premkumar L, Mehrotra R, et al. Evaluation of thermal stability of indinavir sulphate using diffuse reflectance infrared spectroscopy. J Pharm Biomed Anal. 2008;47:248–254.
  • Imperiale JC, Bevilacqua G, Rosa P. d T V E, et al. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method. Drug Dev Ind Pharm. 2014;40:1607–1615.
  • Qiu J-F, et al. Preparation and characterization of monomethoxy poly (ethylene glycol)-poly (ε-caprolactone) micelles for the solubilization and in vivo delivery of luteolin. Int J Nanomedicine. 2013;8:3061.
  • Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm Res. 1997;14:763–766.
  • Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175:880–885.
  • Li J, Liu Y, Yu X, et al. Reduced oral bioavailability and altered pharmacokinetics of saquinavir by co-administration with biochanin A in rats. Drug Res (Stuttg). 2016;66:484–488.
  • Li J, Liu Y, Zhang J, et al. Effects of resveratrol on P-glycoprotein and cytochrome P450 3A in vitro and on pharmacokinetics of oral saquinavir in rats. Drug Des Devel Ther. 2016;10:3699.