6,426
Views
59
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, identification and application of the novel metal-organic framework Fe3O4@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity

, &
Pages 2024-2030 | Received 12 Feb 2019, Accepted 05 May 2019, Published online: 21 May 2019

References

  • Wang NX, Von-Recum HA. Affinity-based drug delivery. Macromol Biosci. 2011;11:321–332.
  • Tiwari G, Tiwari R, Sriwastawa B. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.
  • Farshbaf M, Davaran S, Zarebkohan A. Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol. 2017;46:1872–1892.
  • Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des. 2006;12:4669–4684.
  • Sharma A, Sharma U. Liposome in drug delivery: progress and limitations. Int J Pharm. 1997;154:123–140.
  • Kazempour M, Namazi H, Akbarzadeh A, et al. Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artif Cells Nanomed Biotechnol. 2019;47:90–94.
  • Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery . Adv Drug Deliv Rev. 2001;53:321–339.
  • Batten S, Champness N, Chen X, et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem. 2013;85:1715–1724.
  • James S. Metal-organic frameworks. Chem Soc Rev. 2003;32:276–288.
  • Horcajada P, Serre C, Vallet-Regi M, et al. Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed. 2006;45:5974–5978.
  • Zhu X, Wang Y, Gu J, et al. Inherent anchorages in Uio-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun (Camb). 2014;50:8779–8782.
  • Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery . J Am Chem Soc. 2008;130:6774–6780.
  • Zhuang J, Kuo CH, Chou LY, et al. Opimized metal-organic framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8:2812–2819.
  • Zheng H, Zhang Y, Wan W, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138:962–968.
  • Tan L, Song N, Zhang SX, et al. Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on command drug release in bone diseases. J Mater Chem B. 2016;4:135–140.
  • Kazemi N, shojaosadati S, Morsali A. In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mater. 2014;186:73–79.
  • Zhang L, Chen Y, Li Z, et al. Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew Chem Int Ed. 2016;55:2118–2121.
  • Zhang M, Zhang L, Chen Y, et al. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem Sci. 2017;8:8067–8077.
  • Huang XC, Lin YY, Zhang JP, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl. 2006;45:1557–1559.
  • Hergt R, Dutz S, Muller R, et al. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter. 2006;18:2919–2934.
  • Jurgons R, Seliger C, Hilpert A, et al. Drug loaded magnetic nanoparticles for cancer therapy. J Phys Condens Matter. 2006;18:2893–2903.
  • Zhanet G, Fontaine S, Schurek K, et al. A review of new fluoroquinolones: focus on their use. Treat Respir Med. 2006;5:437–465.
  • Ghasemzadeh MA, Mirhosseini-Eshkevari B, Abdollahi BMH. MIL‐53 (Fe) metal-organic frameworks (MOFs) as an efficient and reusable catalyst for the one‐pot four‐component synthesis of pyrano [2, 3‐c]‐pyrazoles. Appl Organometal Chem. 2019;33:e4679.
  • Ghasemzadeh MA, Abdollahi-Basir MH, Mirhosseini-Eshkevari B. Multi-component synthesis of spiro [diindeno [1, 2-b: 2′, 1′-e] pyridine-11, 3′-indoline]-triones using zinc terephthalate metal-organic frameworks. Green Chem Lett Rev. 2018;11:47–53.
  • Ghasemzadeh MA, Abdollahi-Basir MH, Elyasi Z. Synthesis of some novel imidazoles catalyzed by Co3O4 nanoparticles and evaluation of their antibacterial activities. Comb Chem High Throughput Screen. 2018;21:271–280.
  • Farhadi S, Ghasemzadeh MA, Aghaei SS. NiCo2O4@Ni(BDC) nano-porous metal-organic framework as a novel catalyst for the synthesis of spiro[indene[1,2-d]pyrimidine-ones and investigation of their antimicrobial activities. Chem Select. 2019;4:729–736.
  • Jin T, Yang Q, Meng C, et al. Promoting desulfurization capacity and separation efficiency simultaneously by the novel magnetic Fe3O4@PAA@MOF-199. RSC Adv. 2014;4:41902–41909.
  • Aguado S, Quirós J, Canivet J, et al. Antimicrobial activity of cobalt imidazolate metal-organic frameworks. Chemosphere. 2014;113:188–192.
  • Jian M, Liu B, Zhang G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. Colloids Surf A. 2015;465:67–76.
  • Ethiraj J, Bonino F, Lamberti C, et al. H2S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study. Micropor Mesopor Mat. 2015;207:90–94.
  • Ghasemzadeh MA, Safaei-Ghomi J, Molaei H. Fe3O4 nanoparticles: as an efficient, green and magnetically reusable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine derivatives under solvent-free conditions. C R Chim. 2012;15:969–974.