5,831
Views
55
CrossRef citations to date
0
Altmetric
Research Article

Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles

, , , ORCID Icon, , , , , & show all
Pages 2072-2082 | Received 30 Mar 2019, Accepted 10 May 2019, Published online: 24 May 2019

References

  • Al-Dhabi N, Valan Arasu M. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 2018;8:500.
  • Taner M, Sayar N, Yulug IG, et al. Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys. J Mater Chem. 2011;21:13150–13154.
  • Wang C, Kim YJ, Singh P, et al. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artific Cells, Nanomed Biotechnol. 2016;44:1127–1132.
  • Ojo SA, Lateef A, Azeez MA, et al. Biomedical and catalytic applications of gold and silver-gold alloy nanoparticles biosynthesized using cell-free extract of Bacillus safensis LAU 13: antifungal, dye degradation, anti-coagulant and thrombolytic activities. IEEE Transon Nanobiosci. 2016;15:433–442.
  • Dhandapani P, Maruthamuthu S, Rajagopal G. Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B: Biol. 2012;110:43–49.
  • Ali AA, Asif MA, Mashrai AM, et al. Green synthesis of ZnO nanoparticles using Bacillus subtilis and their catalytic performance in the one-pot synthesis of steroidal thiophenes. Euro Chem Bull. 2014;3:939–945.
  • Kalimuthu K, Babu RS, Venkataraman D, et al. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Coll Surf B: Biointerf. 2008;65:150–153.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, et al. Silver − protein (core − shell) nanoparticle production using spent mushroom substrate. Langmuir 2007;23:7113–7117.
  • Jayaseelan C, Rahuman AA, Kirthi AV, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Mol Biomol Spectrosc. 2012;90:78–84.
  • Castro L, Blázquez ML, Muñoz JA, et al. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol. 2013;7:109–116.
  • Shahzad R, Latif Khan A, Ali L, et al. Characterization of new bioactive enzyme inhibitors from endophytic Bacillus amyloliquefaciens RWL-1. Molecules 2018;23:114.
  • Southam G, Beveridge TJ. The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta. 1994;58:4527–4530.
  • Shivaji S, Madhu S, Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Proc Biochem. 2011;46:1800–1807.
  • Kumar V, Wariar P, Prasad V, et al. A novel approach for the synthesis of nanocrystalline zinc oxide powders by room temperature co-precipitation method. Mater Lett. 2011;65:2059–2061.
  • Wang P, Zakeeruddin SM, Humphry-Baker R, et al. A binary ionic liquid electrolyte to achieve ≥7% power conversion efficiencies in dye-sensitized solar cells. Chem Mater. 2004;16:2694–2696.
  • Nohynek GJ, Lademann J, Ribaud C, et al. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol. 2007;37:251–277.
  • Nohynek G, Dufour E, Roberts MS. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol. 2008;21:136–149.
  • Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008;9:035004.
  • Dong S, Roman M. Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc. 2007;129:13810–13811.
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Translat Med. 2012;4:128ra39–128ra39.
  • Sharma D, Rajput J, Kaith B, et al. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 2010;519:1224–1229.
  • Rehman S, Shawl A, Kour A, et al. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Appl Biochem Microbiol. 2008;44:203–209.
  • Kumar A, Singh R, Yadav A, et al. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech. 2016;6:60.
  • Lin J, Cheng J, Chen K, et al. The icmF3 locus is involved in multiple adaptation-and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol. 2015;5:70.
  • Chen C, Xin K, Liu H, et al. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Scientific Rep. 2017;7:41564.
  • Breznak JA, Costilow RN. Physicochemical factors in growth. Methods for general and molecular microbiology, Third Edition. Washington (DC): American Society of Microbiology; 2007. p. 309–329.
  • Kuo J. Electron microscopy. Methods and protocols. Third ed. New York (NY): Springer, Humana Press; 2014.
  • Hayat MA. Prinicpals and techniques in electron microscopy. Biological applications. 4th Edition ed. Cambridge, UK: Cambridge University Press; 2000.
  • Bozzola JJ, Russell LD. (1999). Electron microscopy: principles and techniques for biologists. Sudbury (MA): Jones and Bartlett.
  • Dalisay DS, Williams DE, Wang XL, et al. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PLoS One. 2013;8:e77078.
  • Altschul S, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
  • Yoon S-H, Ha S-M, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–1617.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874.
  • Rajabairavi N, Raju CS, Karthikeyan C, et al. Recent Trends in Materials Science and Applications. Cham, Switzerland: Springer; 2017. Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum; p. 245–254.
  • Ansari MA, Baykal A, Asiri S, et al. Synthesis and characterization of antibacterial activity of spinel chromium-substituted copper ferrite nanoparticles for biomedical application. J Inorg Organomet Polym Mater. 2018;28:2316–2327.
  • Manokari M, Ravindran CP, Shekhawat MS. Biosynthesis of zinc oxide nanoparticles using Melia azedarach L. extracts and their characterization. Int J Pharma Sci Res. 2016;1:31–36.
  • Shen Z, Zhou H, Chen H, et al. Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange. Nanomaterials 2018;8:317.
  • Moezzi A, Cortie MB, McDonagh AM. Zinc hydroxide sulphate and its transformation to crystalline zinc oxide. Dalton Trans. 2013;42:14432–14437.
  • Siala R, Chobba IB, Vallaeys T, et al. Analysis of the cultivable endophytic bacterial diversity in the date palm (Phoenix dactylifera L.) and evaluation of its antagonistic potential against pathogenic Fusarium species that cause date palm bayound disease. J Appl Env Microbiol. 2016;4:93–104.
  • Hallmann J, Quadt-Hallmann A, Mahaffee W, et al. Bacterial endophytes in agricultural crops. Can J Microbiol. 1997;43:895–914.
  • Mahmoud FM, Krimi Z, Maciá-Vicente JG, et al. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes. Revista Iberoamericana de Micologia. 2017;34:116–120.
  • Dunlap CA, Schisler DA, Perry EB, et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol. 2017;67:2720–2725.
  • Echigo A, Hino M, Fukushima T, et al. Endospores of halophilic bacteria of the family Bacillaceae isolated from non-saline Japanese soil may be transported by Kosa event (Asian dust storm). Saline Systems 2005;1:8.
  • Smirnova T, Zubasheva M, Shevlyagina N, et al. Electron microscopy of the surfaces of bacillus spores. Microbiology 2013;82:713–720.
  • Hussein MZ, Azmin W, Mustafa M, et al. Bacillus cereus as a biotemplating agent for the synthesis of zinc oxide with raspberry-and plate-like structures. J Inorg Biochem. 2009;103:1145.
  • Alkaim AF. Eco friendly synthesis, characterization and antibacterial activity of ZnO nano particles using bacillus subtilis against multi-drug resistant bacteria. J Glob Pharma Technol. 2017;9:207–213.
  • Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res. 2013;2:48–57.
  • Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mat. 2001;3:643–646.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, et al. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed: Nanotechnol, Biol Med. 2011;7:184–192.