2,380
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Designing an immunosensor for detection of Brucella abortus based on coloured silica nanoparticles

, , , &
Pages 2562-2568 | Received 02 Mar 2019, Accepted 16 Apr 2019, Published online: 18 Jun 2019

References

  • El-Diasty M, Wareth G, Melzer F, et al. Isolation of Brucella abortus and Brucella melitensis from seronegative cows is a serious impediment in brucellosis control. Vet Sci. 2018;5:28.
  • Minda AG, Gezahegne MK. A review on diagnostic methods of brucellosis. J Vet Sci Technol. 2016;7:1–8.
  • Alamian S, Esmaelizad M, Zahraei T, et al. A novel PCR assay for detecting Brucella abortus and Brucella melitensis. Osong Public Health Res Persp. 2017;8:65.
  • Petrović M, Ž. Cvetnić IOP conference series earth and environmental science. Bristol, England: IOP Publishing; 2017. Brucellosis-the past, the present, the future; p. 012019.
  • Jahandeh N, et al. Different methods for diagnosis of Brucella and Legionella spp. in various samples. J Appl Biotechnol Rep. 2015;2:187–190.
  • Higgins J, et al. Molecular epidemiology of Brucella abortus isolates from cattle, elk, and bison in the United States: 1998–2011. Appl Env Microbiol. 2012;78:3674–3684.
  • Kaden R, et al. A novel real-time PCR assay for specific detection of Brucella melitensis. BMC Infect Dis. 2017;17:230.
  • Byrne B, Stack E, Gilmartin N, et al. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 2009;9:4407–4445.
  • Actor JK. Introductory immunology: basic concepts for interdisciplinary applications.Waltham, MA: Academic Press; 2014.
  • Sharma S, Byrne H, O’Kennedy RJ. Antibodies and antibody-derived analytical biosensors. Essay Biochem. 2016;60:9–18.
  • Alamer S, Chinnappan R, Zourob M. Development of rapid immuno-based nanosensors for the detection of pathogenic bacteria in poultry processing plants. Procedia Technol. 2017;27:23–26.
  • Wang X, Niessner R, Knopp D. Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Sensors 2014;14:21535–21548.
  • Shahbazi R, Salouti M, Amini B, et al. Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes. 2018;41:8–13.
  • Sun Q, Zhao G, Dou W. Blue silica nanoparticle-based colorimetric immunoassay for detection of Salmonella pullorum. Anal Meth. 2015;7:8647–8654.
  • Narmani A, Kamali M, Amini B, et al. Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles. Proc Biochem. 2018;65:46–54.
  • Sun Q, Zhao G, Dou W. An optical and rapid sandwich immunoassay method for detection of Salmonella pullorum and Salmonella gallinarum based on immune blue silica nanoparticles and magnetic nanoparticles. Sens Actuat B: Chem. 2016;226:69–75.
  • Hemadi A, Ekrami A, Oormazdi H, et al. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica. Acta Tropica. 2015;145:26–30.
  • Bagwe RP, Yang C, Hilliard LR, et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 2004;20:8336–8342.
  • Yu H, Zhao G, Dou W. Simultaneous detection of pathogenic bacteria using agglutination test based on colored silica nanoparticles. CPB. 2015;16:716–723.
  • Amini B, Kamali M, Salouti M, et al. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence. Biosens Bioelectron. 2017;92:679–686.
  • Siadat SD, Vaziri F, Eftekhary M, et al. Preparation and evaluation of a new lipopolysaccharide-based conjugate as a vaccine candidate for brucellosis. Osong Publ Health Res Persp. 2015;6:9–13.
  • Farias S, de Oliveira D, de Souza AAU, et al. Removal of reactive blue 21 and reactive red 195 dyes using horseradish peroxidase as catalyst. Braz J Chem Eng. 2017;34:701–707.
  • Kong L, Uedono A, Smith SV, et al. Synthesis of silica nanoparticles using oil-in-water emulsion and the porosity analysis. J Sol-Gel Sci Technol. 2012;64:309–314.
  • Sun Q, Zhao G, Dou W. A nonenzymatic optical immunoassay strategy for detection of Salmonella infection based on blue silica nanoparticles. Analytica Chimica Acta. 2015;898:109–115.
  • Bordbar AK, Rastegari AA, Amiri R, et al. Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int. 2014;2014:1.
  • Loekitowati Hariani P, et al. Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. IJESD. 2013;4:336–340.
  • Wen J, Zhou S, Chen J. Colorimetric detection of Shewanella oneidensis based on immunomagnetic capture and bacterial intrinsic peroxidase activity. Sci Rep. 2014;4:5191.
  • Song D, et al. A rapid detection method of Brucella with quantum dots and magnetic beads conjugated with different polyclonal antibodies. Nanoscale Res Lett. 2017;12:179.
  • Wu H, Zuo Y, Cui C, et al. Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode. Sensors 2013;13:8551–8563.
  • Bayramoglu G, et al. Fast and sensitive detection of Salmonella in milk samples using aptamer-functionalized magnetic silica solid phase and MCM-41-aptamer gate system. ACS Biomater Sci Eng. 2018;4:1437–1444.
  • Li L, Yin D, Xu K, et al. A sandwich immunoassay for brucellosis diagnosis based on immune magnetic beads and quantum dots. J Pharmac Biomed Anal. 2017;141:79–86.
  • Liu Y, et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Microchimica Acta 2018;185:360.
  • Christopher S, Umapathy B, Ravikumar K. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J Lab Phys. 2010;2:55.
  • Maldonado RF, Sa-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016;40:480–493.