1,713
Views
9
CrossRef citations to date
0
Altmetric
Article

Development of polypyrrole/collagen/nano-strontium substituted bioactive glass composite for boost sciatic nerve rejuvenation in vivo

, , &
Pages 3423-3430 | Received 27 May 2019, Accepted 27 Jun 2019, Published online: 11 Aug 2019

References

  • Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci. 2009;16:108–119.
  • Mobini S, Spearman BS, Lacko CS, et al. Recent advances in strategies for peripheral nerve tissue engineering. Curr Opin Biomed Eng. 2017;4:134–142.
  • Sensharma P, Madhumathi G, Jayant RD, et al. Biomaterials and cells for neural tissue engineering: current choices. Mater Sci Eng C. 2017;77:1302–1315.
  • Heidari M, Bahrami SH, Ranjbar-Mohammadi M, et al. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C. 2019;103:109768.
  • Salehi M, Bagher Z, Kamrava SK, et al. Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering. J Cell Physiol. 2019;234:1–12.
  • Lee B, Koripalli MK, Jia Y, et al. An implantable peripheral nerve recording and stimulation system for experiments on freely moving animal subjects. Sci Rep. 2018;8:6115–6127.
  • Anderson M, Shelke NB, Manoukian OS, et al. Peripheral nerve regeneration strategies: electrically stimulating polymer based nerve growth conduits. Crit Rev Biomed Eng. 2015;43:131–159.
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med. 2011;5:e17–e35.
  • Bober P, Capáková Z, Acharya U, et al. Highly conducting and biocompatible polypyrrole/poly(vinyl alcohol) cryogels. Synth Met. 2019;252:122–126.
  • Maruthapandi M, Nagvenkar AP, Perelshtein I, et al. Carbon-dot initiated synthesis of polypyrrole and polypyrrole@cuo micro/nanoparticles with enhanced antibacterial activity. ACS Appl Polym Mater. 2019;1:1181–1186.
  • Massoumi B, Hatamzadeh M, Firouzi N, et al. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater Sci Eng C. 2019;98:300–310.
  • Tsai N‐C, She J-W, Wu J-G, et al. Poly(3,4‐ethylenedioxythiophene) polymer composite bioelectrodes with designed chemical and topographical cues to manipulate the behavior of pc12 neuronal cells. Adv Mater Interfaces. 2019;6:1801576.
  • Ferreira CL, Valente CA, Zanini ML, et al. Biocompatible PCL/PLGA/polypyrrole composites for regenerating nerves. Macromol Symp. 2019;383:1800028.
  • Su D, Zhou J, Ahmed KS, et al. Fabrication and characterization of collagen-heparin-polypyrrole composite conductive film for neural scaffold. Int J Biol Macromol. 2019;129:895–903.
  • Chakraborty R, Seesal VS, Manna JS, et al. Synthesis, characterization and cytocompatibility assessment of hydroxyapatite-polypyrrole composite coating synthesized through pulsed reverse electrochemical deposition. Mater Sci Eng C. 2019;94:597–607.
  • Khan MA, Cantù E, Tonello S, et al. A review on biomaterials for 3d conductive scaffolds for stimulating and monitoring cellular activities. Appl Sci. 2019;9:961.
  • Heo DN, Hospodiuk M, Ozbolat IT. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater. 2019. doi: 10.1016/j.actbio.2019.02.046
  • Goodarzi H, Jadidi K, Pourmotabed S, et al. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol. 2019;126:620–632.
  • Lin K, Zhang D, Macedo MH, et al. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Funct Mater. 2018;29:1804943.
  • Lee Y-S, Arinzeh TL. Electrospun nanofibrous materials for neural tissue engineering. Polymers. 2011;3:413–426.
  • Liu J, Rawlinson SCF, Hill RG, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater. 2016;32:412–422.
  • Fan S, Huang Zhang ZY, et al. Magnetic chitosan-hydroxyapatite composite microspheres: Preparation, characterization, and application for the adsorption of phenolic substances. Bioresour Technol. 2019;274:48–55.
  • Yang CR, Wang YJ, Chen XF. Preparation and evaluation of biomimetric nano-hydroxyapatite-based composite scaffolds for bone-tissue engineering. Chin Sci Bull. 2012;57:2787.
  • Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, et al. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts. Mater Sci Eng C. 2019;96:337–346.
  • Samadian H, Salehi M, Farzamfar S, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018;46:964–S974.
  • Brown CJ, Mackinnon SE, Evans PJ, et al. Self‐evaluation of walking‐track measurement using a sciatic function index. Microsurgery. 1989;10:226–235.
  • Liu C, Fan L, Xing J, et al. Inhibition of astrocytic differentiation of transplanted neural stem cells by chondroitin sulfate methacrylate hydrogels for the repair of injured spinal cord. Biomater Sci. 2019;7:1995–2008.
  • Soucy JR, Sani ES, Lara RP, et al. Photocrosslinkable gelatin/tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Eng A. 2018;24:1393–1405.
  • Babu A, Prasanth KG, Balaji B. Effect of curcumin in mice model of vincristine induced neuropathy. Pharm Biol. 2015;53:838–848.
  • Mekonnen BT, Ragothaman M, Kalirajan C, et al. Palanisamy, conducting collagen-polypyrrole hybrid aerogels made from animal skin wastes. RSC Adv. 2016;6:63071–63077.
  • Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002;62:600–612.
  • Oryan A, Eslaminejad MB, Kamali A, et al. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J Biomed Mater Res. 2019;107B:50–64.
  • Manivasagan P, Bui NQ, Bharathiraja S, et al. Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci Rep. 2017;7:4359.
  • Yeow ML, Liu YT, Li K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J Appl Polym Sci. 2004;92:1782–1789.
  • Yu H, Peng J, Xu Y, et al. Bioglass activated skin tissue engineering constructs for wound healing. ACS Appl Mater Interfaces. 2016;81:703–715.
  • Naseri S, Lepry WC, Nazhat SN. Bioactive glasses in wound healing: hope or hype? J Mater Chem B. 2017;5:6167–6174.
  • Ma Y, Dong L, Zhou D, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med. 2019;23:2822–2835.
  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, et al. Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J Physiol Sci. 2018;68:579.
  • Breshah MN, Sadakah AA, Eldrieny EA, et al. Functional and histological evaluation of rat sciatic nerve anastomosis using cyanoacrylate and fibrin glue. Tanta Dent J. 2013;10:67–74.
  • Dubový P, Klusáková I, Hradilová-Svízenská I, et al. A conditioning sciatic nerve lesion triggers a pro-regenerative state in primary sensory neurons also of dorsal root ganglia non-associated with the damaged nerve. Front Cell Neurosci. 2019;13:1–16.
  • Dai L-G, Huang G-S, Hsu S-H. Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant. 2013;22:2029–2039.
  • Wu D, Raafat A, Pak E, et al. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol. 2012;233:555–565.