1,764
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Prolonged functional life span of artificial red cells in blood circulation by repeated methylene blue injections

ORCID Icon &
Pages 3123-3128 | Received 26 Jun 2019, Accepted 12 Jul 2019, Published online: 27 Jul 2019

References

  • Chang TM. Nanobiotechnology for hemoglobin-based blood substitutes. Crit Care Clin. 2009;25:373–382.
  • Alayash AI. Blood substitutes: why haven't we been more successful? Trends Biotechnol. 2014;32:177–185.
  • Winslow RM. Cell-free oxygen carriers: scientific foundations, clinical development, and new directions. Biochim Biophys Acta. 2008;1784:1382–1386.
  • Sakai H, Sou K, Tsuchida E. Hemoglobin-vesicles as an artificial oxygen carrier. Meth Enzymol. 2009;465:363–384.
  • Sakai H. Overview of potential clinical applications of hemoglobin vesicles (HbV) as artificial red cells, evidenced by preclinical studies of the academic research consortium. JFB. 2017;8:10.
  • Matsuhira T, Kure T, Yamamoto K, et al. Analysis of dimeric αβ subunit exchange between PEGylated and native hemoglobins (α2β2 tetramer) in an equilibrated state by intramolecular ββ-cross-linking. Biomacromolecules. 2018;19:3412–3420.
  • Sakai H, Masada Y, Takeoka S, et al. Characteristics of bovine hemoglobin as a potential source of hemoglobin-vesicles for an artificial oxygen carrier. J Biochem. 2002;131:611–617.
  • Takeoka S, Teramura Y, Atoji T, et al. Effect of Hb-encapsulation with vesicles on H2O2 reaction and lipid peroxidation. Bioconjug Chem. 2002;13:1302–1308.
  • Chen G, Chang T. Dual effects include antioxidant and pro-oxidation of ascorbic acid on the redox properties of bovine hemoglobin. Artif Cells Nanomed Biotechnol. 2018;46:983–992.
  • Takeoka S, Ohgushi T, Sakai H, et al. Construction of artificial methemoglobin reduction systems in Hb vesicles. Artif Cells Blood Substit Immobil Biotechnol. 1997;25:31–41.
  • Takeoka S, Sakai H, Kose T, et al. Methemoglobin formation in hemoglobin vesicles and reduction by encapsulated thiols. Bioconjugate Chem. 1997;8:539–544.
  • Teramura Y, Kanazawa H, Sakai H, et al. Prolonged oxygen-carrying ability of hemoglobin vesicles by coencapsulation of catalase in vivo. Bioconjugate Chem. 2003;14:1171–1176.
  • Sakai H, Masada Y, Onuma H, et al. Reduction of methemoglobin via electron transfer from photoreduced flavin: restoration of O2-binding of concentrated hemoglobin solution coencapsulated in phospholipid vesicles. Bioconjugate Chem. 2004;15:1037–1045.
  • Sakai H, Li B, Lim WL, et al. Red blood cells donate electrons to methylene blue mediated chemical reduction of methemoglobin compartmentalized in liposomes in blood. Bioconjugate Chem. 2014;25:1301–1310.
  • Kettisen K, Bülow L, Sakai H. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles. Bioconjugate Chem. 2015;26:746–754.
  • Ghirmai S, Bülow L, Sakai H. In vivo evaluation of electron mediators for the reduction of methemoglobin encapsulated in liposomes using electron energies produced by red blood cell glycolysis. Artif Cells Nanomed Biotechnol. 2018;46:1364–1372.
  • Sakai H, Takeoka S, Nishide H, et al. Convenient method to purify hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1994;22:651–656.
  • Sakai H, Seishi Y, Obata Y, et al. Fluid resuscitation with artificial oxygen carriers in hemorrhaged rats: profiles of hemoglobin-vesicle degradation and hematopoiesis for 14 days. Shock. 2009;31:192–200.
  • Sou K, Klipper R, Goins B, et al. Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute. J Pharmacol Exp Ther. 2005;312:702–709.
  • Zhang J, Wang Y, You GX, et al. Conjugation with 20 kDa dextran decreases the autoxidation rate of bovine hemoglobin. Artif Cells Nanomed Biotechnol. 2018;46:1436–1443.
  • Faivre B, Menu P, Labrude P, et al. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the bloodstream. Literature review and outline of autooxidation reaction. Artif Cells Blood Substit Immobil Biotechnol. 1998;26:17–26.
  • Jeong ST, Ho NT, Hendrich MP, et al. Recombinant hemoglobin(alpha 29leucine → phenylalanine, alpha 96valine → tryptophan, beta 108asparagine → lysine) exhibits low oxygen affinity and high cooperativity combined with resistance to autoxidation. Biochemistry. 1999;38:13433–13442.
  • Jang DH, Nelson LS, Hoffman RS. Methylene blue for distributive shock: a potential new use of an old antidote. J Med Toxicol. 2013;9:242–249.
  • Ozal E, Kuralay E, Yildirim V, et al. Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery. Ann Thorac Surg. 2005;79:1615–1619.
  • Bradberry SM. Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue. Toxicol Rev. 2003;22:13–27.
  • Peter C, Hongwan D, Küpfer A, et al. Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol. 2000;56:247–250.