2,825
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of silver nanoparticles from Alpinia officinarum mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats

, , , , , , & show all
Pages 3212-3221 | Received 27 Jun 2019, Accepted 12 Jul 2019, Published online: 30 Jul 2019

References

  • Miller RP, Tadagavadi RK, Ramesh G, et al. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel). 2010;2:2490–2518.
  • Campbell NP, Kindler HL. Update on malignant pleural mesothelioma. Semin Respir Crit Care Med. 2011;32:102–110.
  • Goffin J, Lacchetti C, Ellis PM, et al. First-line systemic chemotherapy in the treatment of advanced non-small cell lung cancer: a systematic review. J Thorac Oncol. 2010;5:260–274.
  • Ismaili N, Amzerin M, Elmajjaoui S, et al. The role of chemotherapy in the management of bladder cancer. Prog Urol. 2011;21:369–382.
  • Santos NAG, Rodrigues MAC, Martins NM, et al. Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch Toxicol. 2012;86:1233–1250.
  • Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007.
  • Atessahin A, Karahan I, Yilmaz S, et al. The effect of manganese chloride on gentamicine-induced nephrotoxicity in rats. Pharmacol. Res. 2003;48:637–642.
  • Yao X, Panichpisal K, Kurtzman N, et al. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–124.
  • Perše M. Večerić-Haler Ž. Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int. 2018;12:1462802.
  • Volarevic V, Djokovic1 B, Jankovic MG, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biome Sci. 2019;26:25.
  • Antunes LM, Darin JD, Bianchi NL. Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacol Res. 2001;43:145–150.
  • Atessahin A, Yilmaz S, Karahan I, et al. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology 2005;212:116–123.
  • Silva CR, Greggi Antunes LM, Bianchi M. Antioxidant action of bixin against cisplatin-induced chromosome aberrations and lipid peroxidation in rats. Pharmacol. Res. 2001;43:561–566.
  • Naziroglu M, Karaoğlu A, Aksoy AO. Selenium and high dose Vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 2004;195:221–230.
  • Lim TK. Edible medicinal and non-medicinal plants: modified stems, roots, bulbs, Vol. 12. London (UK): Springer; 2002. p. 178.
  • Daniel M. Medicinal plants: chemistry and properties. Enfield (UK): Science Publishers; 2006. p. 63.
  • Zhang BB, Dai Y, Liao ZX, et al. Three new antibacterial active diarylheptanoids from Alpinia officinarum. Fitoterapia 2010;81:948–952.
  • Dan LI, Wei QU, Ling ZH, et al. A new dimeric diarylheptanoid from the rhizomes of Alpinia officinarum. Chin J Nat Med. 2014;12:139–141.
  • Köse LP, Gülcin I, Gören AC, et al. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Industrial Crops and Products. 2015;74:712–721.
  • Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Biomed Res Int. 2015;2015:153573.
  • Abdul H, Sivaraj R, Venckatesh R. Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.- lamiaceae leaf extract. Mater. Lett. 2014;131:16–18.
  • Rajeshkumar S. Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol. 2016;14:195–202.
  • He Y, Ma FYZ, Zhang H, et al. Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv. 2017;7:39842.
  • Rivera-Rangel RD, González-Muñoz MP, Avila-Rodriguez M, et al. Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Coll Surf A: Physicochem Eng Asp. 2018;536:60–67.
  • Meva FE, Mbeng JO, Ebongue CO, et al. Stachytarpheta cayennensis aqueous extract, a new bioreactor towards silver nanoparticles for biomedical applications. JBNB. 2019;10:102–119.
  • Jain D, Kumar Daima H, Kachhwaha S, et al. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Bios. 2009;4:3557–3563.
  • Iwata J, Nishikaze O. New micro-turbidimetric method for determination of protein in cerebrospinal fluid and urine. Clin Chem. 1979;25:1317–1319.
  • Yagi K. Lipid peroxides and human disease. Chem Physiol Lipids. 1987;45:337–351.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–474.
  • Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–394.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77.
  • Ho GY, Woodward N, Coward JI. Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 2016;102:37–46.
  • Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003;1:47–61.
  • Daugaard G, Abildgaard U. Cisplatin nephrotoxicity. A review. Cancer Chemother Pharmacol. 1989;25:1–9.
  • Gavade NL, Kadam AN, Suwarnkar MB, et al. Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus jujuba leaf extract. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2015;136:953–960.
  • Selvi BC, Madhavan J, Santhanam A. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv Nat Sci: Nanosci Nanotechnol. 2016;7:035015.
  • Ali HM, Abo-Shady A, Sharaf Eldeen HA, et al. Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chem Cent J. 2013;7:53.
  • Huang YC, Tsai MS, Hsieh PC, et al. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol. 2017;329:128–139.
  • Ciarimboli G, Ludwig T, Lang D, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167:1477–1484.
  • Arany I, Kaushal GP, Portilla D, et al. Cellular mechanisms of nephrotoxicity. In: Broe MED, Porter GA, Bennett WM, Deray G, editors. Clinical Nephrotoxins. New York (NY): Springer; 2008. p. 155–170.
  • Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22:7265–7279.
  • Lee S, Moon SO, Kim W, et al. Protective role of L-2-oxothiazolidine-4-carboxylic acid in cisplatin-induced renal injury. Nephrol Dial Transplant. 2006;21:2085–2095.
  • Baron S, Tyring SK, Fleischmann WR Jr, et al. The interferons. Mechanisms of action and clinical applications. JAMA 1991;266:1375–1383.
  • Horii Y, Iwano M, Hirata E, et al. Role of interleukin-6 in the progression of mesangial proliferative glomerulonephritis. Kidney Int Suppl. 1993;39:S71–S75.
  • Wada T, Yokoyama H, Tomosugi N, et al. Detection of urinary interleukin-8 in glomerular diseases. Kidney Int. 1994;46:455–460.
  • Finn W, Porter G. Urinary biomarkers and nephrotoxicity. In: de Broe ME, Porter GA, Bennett WM, Verpooten GA, editors. Clinical nephrotoxins, 2nd ed. Dordrecht (Netherlands): Springer; 2003. p. 621–655.
  • Ramesh G, Reeves WB. Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factor-alpha. Kidney Int. 2004;65:490–499.
  • Dong Z, Atherton SS. Tumor necrosis factor-alpha in cisplatin nephrotoxicity: a homebred foe? Kidney Int. 2007;72:5–7.
  • Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis incisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2003;285:F610–F618.
  • Mount PF, Power DA. Nitric oxide in the kidney: functions and regulation of synthesis. Acta Physiol (Oxf). 2006;187:433–446.
  • Yamasowa H, Shimizu S, Inoue T, et al. Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. J Pharmacol Exp Ther. 2004;312:153–159.
  • Holditch SJ, Brown CN, Lombardi AM, et al. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. IJMS. 2019;20:3011.
  • Rosenberg B. Cisplatin: its history and possible mechanism of action. In: Prestayko AW, Crooke ST, Carter SK, editors. Cisplatin: current status and new developments. New York (NY): Academic Press; 1980. p. 9–20.
  • Li RY, Zhang WZ, Yan XT, et al. Arginyl-fructosyl-glucose, a major maillard reaction product of red ginseng, attenuates cisplatin-induced acute kidney injury by regulating nuclear factor κB and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. J Agric Food Chem. 2019;67:5754–5763.
  • Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 2009;122:437–441.
  • Meng YC, Jiang HX, Zhang JH, et al. Activation of hepatocyte growth factor-induced apoptosis in hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi. 2012;20:698–702.
  • Fridman JS, Lowe W. Control of apoptosis by p53. Oncogene 2003;22:9030–9040.
  • Chen X, Wei W, Li Y, et al. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chemico-Biol Interact. 2019;308:269–278.
  • Matsuda H, Ando S, Kato T, et al. Inhibitors from the rhizomes of Alpinia officinarum on production of nitric oxide in lipopolysaccharide-activated macrophages and the structural requirements of diarylheptanoids for the activity. Bioorg Med Chem. 2006;14:138–142.
  • Ly TN, Yamauchi R, Shimoyamada M, et al. Isolation and structural elucidation of some glycosides from the rhizomes of smaller galanga (Alpinia officinarum Hance). J Agric Food Chem. 2002;50:4919–4924.
  • Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf. 2011;10:221–247.
  • Nimse SB, Pal D. Free radicals, natural antioxidants and their reaction mechanisms. RSC Adv. 2015;5:27986–28006.
  • Mayachiew P, Devahastin S. Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT Food Sci Technol. 2008;41:1153–1159.