2,718
Views
24
CrossRef citations to date
0
Altmetric
Article

Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds

, , , , &
Pages 3431-3437 | Received 08 Jun 2019, Accepted 01 Aug 2019, Published online: 14 Aug 2019

References

  • Nasr FH, Khoee S, Dehghan MM, et al. Preparation and evaluation of contact lenses embedded with polycaprolactone-based nanoparticles for ocular drug delivery. Biomacromolecules. 2016;17:485–495.
  • Tarasi R, Khoobi M, Niknejad H, et al. β-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery. J Magn Magn Mater. 2016;417:451–459.
  • Hosseini Sadr S, Davaran S, Alizadeh E, et al. Enhanced anticancer potency by thermo/pH-responsive PCL-based magnetic nanoparticles. J Biomater Sci Polym Ed. 2018;29:277–308.
  • Sadr SH, Davaran S, Alizadeh E, et al. PLA-based magnetic nanoparticles armed with thermo/pH responsive polymers for combination cancer chemotherapy. J Drug Deliv Sci Technol. 2018;45:240–254.
  • Gholibegloo E, Karbasi A, Pourhajibagher M, et al. Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans. J Photochem Photobiol B. 2018;181:14–22.
  • Hokmabad VR, Davaran S, Aghazadeh M, et al. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. J Biomater Appl. 2019;33:1128.
  • Saghebasl S, Davaran S, Rahbarghazi R, et al. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed. 2018;29:1185–1206.
  • Ge S, Zhao N, Wang L, et al. Bone repair by periodontal ligament stem cell seeded nanohydroxyapatite-chitosan scaffold. Int J Nanomed. 2012;7:5405.
  • Hokmabad VR, Davaran S, Aghazadeh M, et al. A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering. Tissue Eng Regen Med. 2018;15:735–750.
  • Li D, Sun H, Hu X, et al. Facile method to prepare PLGA/hydroxyapatite composite scaffold for bone tissue engineering. Mater Technol. 2013;28:316–323.
  • Raeisdasteh Hokmabad V, Davaran S, Ramazani A, et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed. 2017;28:1797–1825.
  • Kouhi M, Morshed M, Varshosaz J, et al. Poly (ε-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J. 2013;228:1057–1065.
  • Valizadeh A, Bakhtiary M, Akbarzadeh A, et al. Preparation and characterization of novel electrospun poly (ϵ-caprolactone)-based nanofibrous scaffolds. Artif Cell Nanomed Biotechnol. 2016;44:504–509.
  • Venugopal JR, Low S, Choon AT, et al. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs. 2008;32:388–397.
  • Liao F, Chen Y, Li Z, et al. A novel bioactive three-dimensional β-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J Mater Sci Mater Med. 2010;21:489–496.
  • Asghari F, Salehi R, Agazadeh M, et al. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. Int J Polym Mat Polym Biomater. 2016;65:720–728.
  • Samiei M, Agazadeh M, Alizadeh E, et al. Osteogenic/odontogenic bioengineering with co-administration of simvastatin and hydroxyapatite on poly caprolactone based nanofibrous scaffold. Adv Pharm Bull. 2016;6:353.
  • Chen Z, Song Y, Zhang J, et al. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Mater Sci Eng C. 2017;72:341–351.
  • Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem cell Res Ther. 2010;1:5.
  • Li Y, Jiao Y, Li X, et al. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem Biophys Res Commun. 2015;460:151–156.
  • Shameli K, Ahmad MB, Zargar M, et al. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomed. 2011;6:331.
  • Ninan N, Grohens Y, Elain A, et al. Synthesis and characterisation of gelatin/zeolite porous scaffold. Eur Polym J. 2013;49:2433–2445.
  • Derakhshankhah H, Hosseini A, Taghavi F, et al. Molecular interaction of fibrinogen with zeolite nanoparticles. Sci Rep. 2019;9:1558.
  • Kavya K, Dixit R, Jayakumar R, et al. Synthesis and characterization of chitosan/chondroitin sulfate/nano-SiO2 composite scaffold for bone tissue engineering. J Biomed Nanotechnol. 2012;8:149–160.
  • Kavya K, Jayakumar R, Nair S, et al. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol. 2013;59:255–263.
  • Samiei M, Aghazadeh M, Movassaghpour AA, et al. Isolation and characterization of dental pulp stem cells from primary and permanent teeth. J Am Sci. 2013;9:153–157.
  • Stanford CM, Jacobson PA, Eanes ED, et al. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 10601 BSP). J Biol Chem. 1995;270:9420–9428.
  • Xie J, MacEwan MR, Schwartz AG, et al. Electrospun nanofibers for neural tissue engineering. Nanoscale. 2010;2:35–44.
  • Fu N, Liao J, Lin S, et al. PCL-PEG-PCL film promotes cartilage regeneration in vivo. Cell Prolif. 2016;49:729–739.
  • Tavolaro P, Catalano S, Martino G, et al. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability. Appl Surf Sci. 2016;380:135–140.
  • Boskey AL. Biomineralization: conflicts, challenges, and opportunities. J Cell Biochem. 1998;72:83–91.
  • Papagerakis P, Berdal A, Mesbah M, et al. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone. 2002;30:377–385.
  • Matsubara T, Kida K, Yamaguchi A, et al. BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008;283:29119–29125.
  • Aghazadeh M, Samiei M, Alizadeh E, et al. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers Polym. 2017;18:1468–1477.