1,391
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Junduqing extractive promotes the apoptosis of nasopharyngeal carcinoma cells through down-regulating Mcl-1 and Bcl-xL and up-regulating Caspase-3, Caspase-8 and Caspase-9

, , , , & ORCID Icon
Pages 3904-3912 | Received 07 Apr 2019, Accepted 09 Sep 2019, Published online: 29 Sep 2019

References

  • Wei KR, Zheng RS, Zhang SW, et al. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin J Cancer. 2017;36(1):90.
  • Cichello SA, Yao Q, Dowell A, et al. Proliferative and inhibitory activity of Siberian ginseng (Eleutherococcus senticosus) extract on cancer cell lines; A-549, XWLC-05, HCT-116, CNE and beas-2b. Asian Pac J Cancer Prev. 2015;16(11):4781–4786.
  • Guo YQ, Sun HY, Chan CO, et al. Centipeda minima (Ebushicao) extract inhibits PI3K-Akt-mTOR signaling in nasopharyngeal carcinoma CNE-1 cells. Chin Med. 2015;10(1):26.
  • Su M, Li Y, Chung HY, et al. 2beta-(Isobutyryloxy)florilenalin, a sesquiterpene lactone isolated from the medicinal plant Centipeda minima, induces apoptosis in human nasopharyngeal carcinoma CNE cells. Molecules. 2009;14(6):2135–2146.
  • Li YJ, Peng XB, Zhao WG. Study on the analgesic and anti-inflammatory effects of Junduqing granule. Chin Pharm. 2011;14:1278–1280.
  • Zhao WG, Li YJ, Yu YL, et al. Therapeutic effect of Junduqing granules on the treatment of anemopyretic cold. Chin J Modern Drug Appl. 2012;6:11–13.
  • Zhao WG, Li YJ, Peng XB. Study on antipyretic effect of Junduqing Granule. Inform Tradit Chin Med. 2012;29:36–37.
  • Peng XB, Zhao WG, Li YJ. Study on acute toxicity test of Junduqing granule. Chin J Modern Drug Appl. 2011;5:24–25.
  • Han Y, Zhao WG, Li YJ. Pharmacodynamic study on in vitro antiviral effect of Junduqing granules. Chin Pharm. 2015;26:3070–3071.
  • Guo SS, Bao L, Cui XL. Experimental study on antivirus effects of Junduqing granule in vitro. Chin J Pharm. 2015;12:325–329.
  • Wang L, Tam JP, Liu DX. Biochemical and functional characterization of Epstein-Barrvirus-encoded BARF1 protein: interaction with human hTid1 protein facilitates its maturation and secretion. Oncogene. 2006;25(31):4320–4331.
  • Zou P, Hong Y, Koh HL. Chemical fingerprinting of Isatis indigotica root by RP-HPLC and hierarchical clustering analysis. J Pharmaceut Biomed. 2005;38(3):514–520.
  • Li JF, Zhao JY, Liao LM. D-optimal design for enzymatic extraction of honeysuckle polysaccharide research. Food Ind. 2017;38(4):144–147.
  • Sukardiman H, Widyawaruyanti A, Sismindari , et al. Apoptosis inducing effect of Andrographolide on TD-47 human breast cancer cell line. Afr J Trad Compl Alt Med. 2007;4:345–351.
  • Varma A, Padh H, Shrivastava N. Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med. 2011;2011:1.
  • Rajagopal D, Kumar RA, Deevi DS, et al. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata. J Exp Ther. 2003;3(3):147–158.
  • Calabrese C, Berman SH, Babish JG, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000;14(5):333–338.
  • Hidalgo MA, Romero A, Figueroa J, et al. Andrographolide interferes with binding of nuclear factor-kappaB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005;144(5):680–686.
  • Handa SS, Sharma A. Hepatoprotective activity of andrographolide from Andrographis paniculata against carbontetrachloride. Indian J Med Res. 1990;92:276–283.
  • Zhou J, Zhang S, Ong CN, et al. Critical role of pro-apoptotic Bcl-2 family members in andrographolide-induced apoptosis in human cancer cells. Biochem Pharmacol. 2006;72(2):132–144.
  • Chen J, Shi DY, Liu SL, et al. Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep. 2012;27(2):523–528.
  • Guerram M, Jiang ZZ, Yousef BA, et al. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget. 2015;6(26):21865–21877.
  • Han B, Zhang X, Zhang Q, et al. Protective effects of salvianolate on microvascular flow in a porcine model of myocardial ischaemia and reperfusion. Arch Cardiovasc Dis. 2011;104(5):313–324.
  • Hiraki M, Suzuki Y, Alam M, et al. MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. Sci Rep. 2016;6(1):26643.
  • Woo SM, Kwon TK. Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells. Chem Biol Interact. 2016;260:168–175.
  • Woo SM, Min K, Seo BR, et al. YM155 sensitizes TRAIL-induced apoptosis through cathepsin S-dependent down-regulation of Mcl-1 and NF-κB-mediated down-regulation of c-FLIP expression in human renal carcinoma Caki cells. Oncotarget. 2016;7(38):61520–61532.
  • Renault TT, Dejean LM, Manon S. A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2. Mech Ageing Dev. 2017;161(Pt B):201–210.
  • Ono M, Ejima K, Higuchi T, et al. Equol enhances apoptosis-inducing activity of genistein by increasing Bax/Bcl-xL expression ratio in MCF-7 human breast cancer cells. Nutr Cancer. 2017;69(8):1300–1307.
  • Freire R, d’Adda Di Fagagna F, Wu L, et al. Cleavage of the Bloom’s syndrome gene product during apoptosis by caspase-3 results in an impaired interaction with topoisomerase IIIα. Nucleic Acids Res. 2001;29(15):3172–3180.
  • Mitupatum T, Aree K, Kittisenachai S, et al. mRNA expression of Bax, Bcl-2, p53, cathepsin B, caspase-3 and caspase-9 in the HepG2 cell line following induction by a novel monoclonal Ab Hep88 mAb: cross-talk for paraptosis and apoptosis. Asian Pac J Cancer Prev. 2016;17(2):703–712.
  • Pu X, Storr SJ, Zhang Y, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis. 2017;22(3):357–368.