2,017
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Facile green synthesis of bismuth sulfide radiosensitizer via biomineralization of albumin natural molecule for chemoradiation therapy aim

ORCID Icon, , , , , , & ORCID Icon show all
Pages 3832-3838 | Received 18 Jul 2019, Accepted 26 Aug 2019, Published online: 26 Sep 2019

References

  • Wang H, Mu X, He H, et al. Cancer radiosensitizers. Trends in pharmacological sciences. 2018;39(1):24–48.
  • Nosrati H, Charmi J, Salehiabar M, et al. Tumor targeted albumin coated bismuth sulfide nanoparticles (Bi2S3) as radiosensitizers and carriers of curcumin for enhanced chemoradiation therapy. ACS Biomater Sci Eng. 2019;5(9):4416–4424.
  • Cheng K, Kothapalli S-R, Liu H, et al. Construction and validation of nano gold tripods for molecular imaging of living subjects. J Am Chem Soc. 2014;136(9):3560–3571.
  • Seh ZW, Liu S, Zhang SY, et al. Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew Chem. 2011;123(43):10322–10325.
  • Cheng K, Sano M, Jenkins CH, et al. Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures. ACS Nano. 2018;12(5):4946–4958.
  • Huang H-H, Chen J, Meng Y-Z, et al. Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption. Mater Res Bull. 2013;48(10):3800–3804.
  • Yang S, Li Z, Wang Y, et al. Multifunctional Bi@ PPy-PEG core–shell nanohybrids for dual-modal imaging and photothermal therapy. ACS Appl Mater Interfaces. 2018;10(2):1605–1615.
  • Ding C, Xu Y, Zhao Y, et al. Fabrication of BSA@ AuNC-based nanostructures for cell fluoresce imaging and target drug delivery. ACS Appl Mater Interfaces. 2018;10(10):8947–8954.
  • Esatbeyoglu T, Huebbe P, Ernst IM, et al. Curcumin—from molecule to biological function. Angew Chem Int Ed. 2012;51(22):5308–5332.
  • Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40–59.
  • Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep. 2011;28(12):1937–1955.
  • Pochampally R, John V, Alb A, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed Cancer Pan Stanford. 2017;8:291–322.
  • Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8(5):3040–3048.
  • Wang Y, Wu Y, Liu Y, et al. BSA‐mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Adv Funct Mater. 2016;26(29):5335–5344.
  • Min Y, Caster JM, Eblan MJ, et al. Clinical translation of nanomedicine. Chem Rev. 2015;115(19):11147–11190.
  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338(6109):903–910.
  • Wang Y, Yan X-P. Fabrication of vascular endothelial growth factor antibody bioconjugated ultrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun. 2013;49(32):3324–3326.
  • Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888–889.
  • Chen W-T, Hsu Y-J. l-Cysteine-Assisted Growth of Core − Satellite ZnS − Au Nanoassemblies with High Photocatalytic Efficiency. Langmuir. 2010;26(8):5918–5925.
  • Xiang J, Cao H, Wu Q, et al. L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres. J Phys Chem C. 2008;112(10):3580–3584.
  • Galasso V, Kovac B, Modelli A, et al. Spectroscopic and theoretical study of the electronic structure of curcumin and related fragment molecules. J Phys Chem A. 2008;112(11):2331–2338.
  • van der Vlies AJ, Morisaki M, Neng HI, et al. Framboidal Nanoparticles Containing a Curcumin–Phenylboronic Acid Complex with Antiangiogenic and Anticancer Activities. Bioconjugate Chem. 2019;30(3):861–870.
  • Singh PK, Wani K, Kaul-Ghanekar R, et al. From micron to nano-curcumin by sophorolipid co-processing: highly enhanced bioavailability, fluorescence, and anti-cancer efficacy. RSC Adv. 2014;4(104):60334–60341.
  • Chen Z, Zhang Y, Xu K, et al. Stability of hydrophilic magnetic nanoparticles under biologically relevant conditions. J Nanosci Nanotech. 2008;8(12):6260–6265.
  • Frankamp BL, Fischer NO, Hong R, et al. Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles. Chem Mater. 2006;18(4):956–959.
  • Ohshima H, Miyagishima A, Kurita T, et al. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Int J Pharm. 2009;377(1–2):180–184.
  • Cademartiri L, Malakooti R, O'Brien PG, et al. Large‐scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew Chem Int Ed. 2008;47(20):3814–3817.
  • Cademartiri L, Malakooti R, O'Brien PG, et al. Inside cover: large‐scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew Chem Int Ed. 2008;47(20):3652–3652.
  • Yang P, Liu Q, Liu J, et al. Bovine serum albumin-coated graphene oxide for effective adsorption of uranium (VI) from aqueous solutions. Ind Eng Chem Res. 2017;56(13):3588–3598.
  • Yu N, Wang Z, Zhang J, et al. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials. 2018;161:279–291.
  • Song G, Liang C, Gong H, et al. Core–shell MnSe@ Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv Mater. 2015;27(40):6110–6117.
  • Huang P, Bao L, Zhang C, et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32(36):9796–9809.