2,369
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Notoginsenoside R1 alleviates high glucose-evoked damage in RSC96 cells through down-regulation of miR-503

, & ORCID Icon
Pages 3947-3954 | Received 09 Jul 2019, Accepted 16 Aug 2019, Published online: 04 Oct 2019

References

  • daCosta DiBonaventura M, Cappelleri JC, Joshi AV. A longitudinal assessment of painful diabetic peripheral neuropathy on health status, productivity, and health care utilization and cost. Pain Med. 2011;12(1):118–126.
  • Liu Y, Sebastian B, Liu B, et al. Sensory and autonomic function and structure in footpads of a diabetic mouse model. Sci Rep. 2017;7(1):41401.
  • Khedr EM, Fawi G, Allah Abbas MA, et al. Prevalence of diabetes and diabetic neuropathy in *Qena Governorate: population-based survey. Neuroepidemiology. 2016;46(3):173–181.
  • Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):41.
  • Zhang J, Ding L, Wang B, et al. Notoginsenoside R1 attenuates experimental inflammatory bowel disease via pregnane X receptor activation. J Pharmacol Exp Ther. 2015;352(2):315–324.
  • Liu WJ, Tang HT, Jia YT, et al. Notoginsenoside R1 attenuates renal ischemia–reperfusion injury in rats. Shock (Augusta, Ga). 2010;34(3):314–320.
  • Meng X, Sun G, Ye J, et al. Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: a novel mechanism of Nrf2/ARE signaling activation. Free Radic Res. 2014;48(4):445–460.
  • Huang G, Zou B, Lv J, et al. Notoginsenoside R1 attenuates glucose-induced podocyte injury via the inhibition of apoptosis and the activation of autophagy through the PI3K/Akt/mTOR signaling pathway. Int J Mol Med. 2017;39(3):559–568.
  • Luo C, Sun Z, Li Z, et al. Notoginsenoside R1 (NGR1) attenuates chronic atrophic gastritis in rats. Med Sci Monit. 2019;25:1177–1186.
  • Tu L, Wang Y, Chen D, et al. Protective effects of notoginsenoside R1 via regulation of the PI3K-Akt-mTOR/JNK pathway in neonatal cerebral hypoxic-ischemic brain injury. Neurochem Res. 2018;43(6):1210–1226.
  • Li Z, Li H, Zhao C, et al. Protective effect of notoginsenoside R1 on an APP/PS1 mouse model of Alzheimer’s disease by up-regulating insulin degrading enzyme and inhibiting Abeta accumulation. CNSNDDT. 2015;14(3):360–369.
  • Zhang B, Zhang X, Zhang C, et al. Notoginsenoside R1 protects db/db mice against diabetic nephropathy via upregulation of Nrf2-mediated HO-1 expression. Molecules (Basel, Switzerland). 2019;24(2):10.
  • Zhang B, Zhang J, Zhang C, et al. Notoginsenoside R1 protects against diabetic cardiomyopathy through activating estrogen receptor alpha and its downstream signaling. Front Pharmacol. 2018;9:1227.
  • Fan C, Qiao Y, Tang M. Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state. Drug Des Dev Ther. 2017;11:3343–3354.
  • Liu XS, Fan B, Szalad A, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 2017;66(12):3111–3121.
  • Zhang Y, Song C, Liu J, et al. Inhibition of miR-25 aggravates diabetic peripheral neuropathy. Neuroreport. 2018;29(11):945–953.
  • Caporali A, Meloni M, Vollenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation. 2011;123(3):282–291.
  • Sheikhbahaei S, Manizheh D, Mohammad S, et al. Can MiR-503 be used as a marker in diabetic patients with ischemic stroke? BMC Endocr Disord. 2019;19(1):42.
  • Luo Q, Feng Y, Xie Y, et al. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomed: Nanotechnol Biol Med. 2019;17:188–197.
  • Li R, Wu Y, Zou S, et al. NGF attenuates high glucose-induced ER stress, preventing Schwann cell apoptosis by activating the PI3K/Akt/GSK3β and ERK1/2 pathways. Neurochem Res. 2017;42(11):3005–3018.
  • Resham K, Sharma SS. Pharmacologic inhibition of porcupine, disheveled, and beta-catenin in Wnt signaling pathway ameliorates diabetic peripheral neuropathy in rats. J Pain: Off J Am Pain Soc. 2019. [Epub ahead of print]. DOI: 10.1016/j.jpain.2019.04.010
  • Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci. 2008;37(2):298–311.
  • Du W, Wang N, Li F, et al. STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J: Off Publ Federation Am Soc Exp Biol. 2019;33(7):8008-8021.
  • Xu DD, Li WT, Jiang D, et al. 3-N-butylphthalide mitigates high glucose-induced injury to Schwann cells: association with nitrosation and apoptosis. Neural Regen Res. 2019;14(3):513–518.
  • Park C, Choi EO, Kim GY, et al. Protective effect of Baicalein on oxidative stress-induced DNA damage and apoptosis in RT4-D6P2T Schwann cells. Int J Med Sci. 2019;16(1):8–16.
  • Ma B, Meng X, Wang J, et al. Notoginsenoside R1 attenuates amyloid-beta-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation. Int Immunopharmacol. 2014;22(1):151–159.
  • Zhai Y, Meng X, Luo Y, et al. Notoginsenoside R1 ameliorates diabetic encephalopathy by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Oncotarget. 2018;9(10):9344–9363.
  • Cashman CR, Hoke A. Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett. 2015;596:33–50.
  • Saravia FE, Beauquis J, Revsin Y, et al. Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment. Cell Mol Neurobiol. 2006;26(4–6):943–957.
  • Chakraborty TR, Cohen J, Yohanan D, et al. Estrogen is neuroprotective against hypoglycemic injury in murine N38 hypothalamic cells. Mol Med Rep. 2016;14(6):5677–5684.
  • Wang Y, Tu L, Li Y, et al. Notoginsenoside R1 alleviates oxygen-glucose deprivation/reoxygenation injury by suppressing endoplasmic reticulum calcium release via PLC. Sci Rep. 2017;7(1):16226.
  • Jia C, Xiong M, Wang P, et al. Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One. 2014;9(6):e99849.
  • Liu J, Hou C, Chen X, et al. Notoginsenoside R1 protects human renal proximal tubular epithelial cells from lipopolysaccharide-stimulated inflammatory damage by up-regulation of miR-26a. Chem Biol Interact. 2019;308:364–371.
  • Wang C, Sun H, Zhong Y. Notoginsenoside R1 promotes MC3T3-E1 differentiation by up-regulating miR-23a via MAPK and JAK1/STAT3 pathways. Artif Cells Nanomed Biotechnol. 2019;47(1):603–609.
  • Fu C, Yin D, Nie H, et al. Notoginsenoside R1 protects HUVEC against oxidized low density lipoprotein (Ox-LDL)-induced atherogenic response via down-regulating miR-132. Cell Physiol Biochem. 2018;51(4):1739–1750.
  • Chen L, Gong HY, Xu L. PVT1 protects diabetic peripheral neuropathy via PI3K/AKT pathway. Eur Rev Med Pharmacol Sci. 2018;22(20):6905–6911.
  • Chen SP, Zhou YQ, Liu DQ, et al. PI3K/Akt pathway: a potential therapeutic target for chronic pain. CPD. 2017;23(12):1860–1868.
  • Wang R, Gao D, Zhou Y, et al. High glucose impaired estrogen receptor alpha signaling via β-catenin in osteoblastic MC3T3-E1. J Steroid Biochem Mol Biol. 2017;174:276–283.
  • Chong ZZ, Hou J, Shang YC, et al. EPO relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. CNR. 2011;8(2):103–120.
  • Yan W, Wu Q, Yao W, et al. MiR-503 modulates epithelial–mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep. 2017;7(1):11313.
  • Li W, Li J, Mu H, et al. MiR-503 suppresses cell proliferation and invasion of gastric cancer by targeting HMGA2 and inactivating WNT signaling pathway. Cancer cell Int. 2019;19:164.
  • Li Q, Li C, Xi S, et al. The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway. Lasers Med Sci. 2019;34(3):607–614.