2,204
Views
12
CrossRef citations to date
0
Altmetric
Research Article

The interaction between self – assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel

, , , , , , , & show all
Pages 3961-3975 | Received 08 Mar 2019, Accepted 09 Sep 2019, Published online: 07 Oct 2019

References

  • Shi Y, Li J, Ren Y, et al. Pharmacokinetics and tissue distribution of emodin loaded nanoemulsion in rats. J Drug Deliv Sci Tec. 2015;30:242–249.
  • Shrimali D, Shanmugam MK, Kumar AP, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013;341(2):139–149.
  • Ahn SM, Kim HN, Yu RK, et al. Emodin from polygonum multiflorum, ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. J Ethnopharmacol. 2016;188:13–20.
  • Huang J, Gong W, Chen Z, et al. Emodin self-emulsifying platform ameliorates the expression of FN, ICAM-1 and TGF-β1 in AGEs-induced glomerular mesangial cells by promoting absorption. Eur J Pharm Sci. 2017;99:128–136.
  • Lu J, Ying X, Zhe Z, et al. Emodin suppresses proliferation, migration and invasion in ovarian cancer cells by down regulating ILK in vitro and in vivo. OTT. 2017;10:3579–3589.
  • Iwanowycz S, Wang J, Hodge J, et al. Emodin inhibits breast cancer growth by blocking the tumor-promoting feedforward loop between cancer cells and macrophages. Mol Cancer Ther. 2016;15(8):1931–1942.
  • Haque E, Kamil M, Irfan S, et al. Blocking mutation independent p53 aggregation by emodin modulates autophagic cell death pathway in lung cancer. Int J Biochem Cell B. 2018;96:90–95.
  • Xie QC, Yang YP. Anti-proliferative of physcion 8-O-β-glucopyranoside isolated from Rumex japonicus Houtt. on A549 cell lines via inducing apoptosis and cell cycle arrest. BMC Complem Alter. 2014;14:1–10.
  • Su J, Yan Y, Qu J, et al. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway. Oncol Rep. 2017;37(3):1565–1572.
  • Xing J, Song G, Deng J, et al. Antitumor effects and mechanism of novel emodin rhamnoside derivatives against human cancer cells in vitro. PLoS One. 2015;10(12):e0144781.
  • Zhang L, He D, Li K, et al. Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. Biomed Pharmacoth. 2017; 90:222–228.
  • Hsu CM, Hsu YY, Shieh FK, et al. Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem Bioph Res. 2010;392(4):473–478.
  • Hwang SY, Heo K, Kim JS, et al. Emodin attenuates radioresistance induced by hypoxia in HepG2 cells via the enhancement of PARP1 cleavage and inhibition of JMJD2B. Oncol Rep. 2015;33(4):1691–1698.
  • Wang CG, Zhong L, Liu YL, et al. Emodin exerts an antiapoptotic effect on human chronic myelocytic leukemia K562 cell lines by targeting the PTEN/PI3K-AKT signaling pathway and deleting BCR-ABL. Integr Cancer Ther. 2017;16(4):526–539.
  • Wang CG, Yang JQ, Liu BZ, et al. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Eur J Pharmacol. 2010;627(1):33–41.
  • Li BJ, Liu TB, Wang WF, et al. Effect of a novel emodin derivative on chronic myelogenous leukemia K562 cells and imatinib-resistant K562/G01 cells. J Exp Hematol. 2016;24:1–7.
  • Dong H, Wu G, Xu H, et al. N-acetylaminogalactosyl-decorated biodegradable PLGA-TPGS copolymer nanoparticles containing emodin for the active targeting therapy of liver cancer. Artif Cells Nanomed Biotechnol. 2018;1:1–13.
  • Liu H, Xu H, Zhang C, et al. Emodin-Loaded PLGA-TPGS nanoparticles combined with heparin sodium-loaded PLGA-TPGS nanoparticles to enhance chemotherapeutic efficacy against liver cancer. Pharm Res. 2016;33(11):2828–2843.
  • Liu H, Gao M, Xu H, et al. A promising emodin-loaded poly (lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy. Pharm Res. 2016;33(1):217–236.
  • Morsi N, Ghorab D, Refai H, et al. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm. 2016;506(1–2):57–67.
  • Chu K, Chen L, Xu W, et al. Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. IJMS. 2013;14(3):6499–6515.
  • Barron V, Killion JA, Pilkington L, et al. Development of chemically cross-linked hydrophilic-hydrophobic hydrogels for drug delivery applications. Eur Polym J. 2016;75:25–35.
  • Liang J, Susan SX, Yang Z, et al. Anticancer drug camptothecin test in 3D hydrogel networks with HeLa cells. Sci Rep. 2017;7(1):37626.
  • Raphael B, Khalil T, Workman VL, et al. 3D cell bioprinting of self-assembling peptide-based hydrogels. Mater Lett. 2017;190:103–106.
  • Wu X, He L, Li W, et al. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater. 2017;4(1):21–30.
  • Xing R, Li S, Zhang N, et al. Self-assembled injectable peptide hydrogels capable of triggering antitumor immune response. Biomacromolecules. 2017;18(11):3514–3523.
  • Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering. Acta Biomater. 2016;46:29–40.
  • Nune M, Krishnan UM, Sethuraman S. PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. Mat Sci Eng C. 2016;62:329–337.
  • McCloskey AP, Gilmore BF, Laverty G. Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens. 2014;3(4):791–821.
  • Yang S, Wei S, Mao Y, et al. Novel hemostatic biomolecules based on elastin-like polypeptides and the self-assembling peptide RADA-16. Bmc Biotechnol. 2018;18(1):12–20.
  • Acar H, Srivastava S, Chung EJ, et al. Self-assembling peptide-based building blocks in medical applications. Adv Drug Deliver Rev. 2017;110–111:65–79.
  • Kuang H, Ku SH, Kokkoli E. The design of peptide-amphiphiles as functional ligands for liposomal anticancer drug and gene delivery. Adv Drug Deliver Rev. 2017;110–111:80–101.
  • Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliver Rev. 2016;106:367–380.
  • Koutsopoulos S. Self-assembling peptides in biomedicine and bioengineering: tissue engineering, regenerative medicine, drug delivery, and biotechnology. Peptide Appl Biomed Biotechnol Bioeng. 2018;15:387–408.
  • Rymer SJ, Tendler SJ, Bosquillon C, et al. Self-assembling peptides and their potential applications in biomedicine. Ther Deliv. 2011;2(8):1043–1056.
  • Eskandari S, Guerin T, Toth I, et al. Recent advances in self-assembled peptides: implications for targeted drug delivery and vaccine engineering. Adv Drug Deliver Rev. 2017;110-111:169–187.
  • Ruan L, Zhang H, Luo H, et al. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci USA. 2009;106(13):5105–5110.
  • Liu J, Zhang L, Yang Z, et al. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed. 2011;6:2143–2153.
  • Ashwanikumar N, Kumar NA, Saneesh Babu PS, et al. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. IJN. 2016;11:5583–5594.
  • Hu C, Huang P. Recent research progress in the determination of solid solubility. J Pharm Anal. 2010;22(4):761–766.
  • Yuan L, Zhong S, Zhou R, et al. Determination of the equilibrium solubility and apparent oil-water partition coefficient of cantharidin by HPLC. Chin J New Drugs. 2017;26(10):1185–1188.
  • Li F, Ding Z, Cao Q. Determination of dissociation constants of five rhubarb anthraquinone derivatives. Chin J Tradit Chin Med. 2007;32(2):166–168.
  • Bin Y. Study of emodin liposome. Dissertation. 2009.
  • National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. Beijing (China): China Medical Science and Technology Press; 2015.
  • Wu D, Zhang S, Zhao Y, et al. The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides. Biomed Mater. 2018; 13(3):035011.
  • Sun Y, Zhang Y, Tian L, et al. Self-assembly behaviors of molecular designer functional RADA16-I peptides: influence of motifs, pH, and assembly time. Biomed Mater. 2016; 12(1):015007.
  • Shamsi F. Investigation of human cell response to covalently attached RADA16-I peptide on silicon surfaces. Colloid Surface B. 2016;145:470–478.
  • Yu Z, Xu Q, Dong C, et al. Self-assembling peptide nanofibrous hydrogel as a versatile drug delivery platform. CPD. 2015;21(29):4342–4354.
  • Hattori T, Ishii K, Tominaga T, et al. A fluorescence study on the local environment of hydrogels: double-network hydrogels having extraordinarily high mechanical strength and its constituent single-network hydrogels. Chem Phys. 2013;419:172–177.
  • Xing YX, Li MH, Tao L, et al. Anti-cancer effects of emodin on HepG2 cells as revealed by 1H-NMR based metabolic profiling. J Proteome Res. 2018;17:1–41.
  • Shia CS, Hou YC, Tsai SY, et al. Differences in pharmacokinetics and ex vivo antioxidant activity following intravenous and oral administrations of emodin to rats. J Pharm Sci. 2010;99(4):2185–2195.
  • Shen C, Shen B, Liu X, et al. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. J Drug Deliv Sci Tec. 2018;43:1–11.
  • Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141.
  • Wang Y, Wang C, Jing Z, et al. A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability. J Colloid Interface Sci. 2017;485:91–98.
  • Wang L, Du J, Zhou Y, et al. Safety of nanosuspensions in drug delivery. Nanomed. 2017;13(2):455–469.
  • Pawar SS, Dahifale BR, Nagargoje SP, et al. Nanosuspension technologies for delivery of drugs. Nanosci Nanotech Res. 2017;4:59–66.