2,781
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biocompatible PLGA-PEG nanocarriers for early detection and treatment of tumours

, , , , , , , & show all
Pages 4211-4221 | Received 16 Apr 2019, Accepted 11 Oct 2019, Published online: 12 Nov 2019

References

  • Discov EDJM, Rana S, Dixit S, et al. Anticancer effects of chemotherapy and nature products. J Med Discov. 2017;2:jmd17008.
  • Jing YK, Wang L, Xia LJ, et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood. 2001;97(1):264–269.
  • Dong X, Yin W, Yu J, et al. Mesoporous bamboo charcoal nanoparticles as a new near-infrared responsive drug carrier for imaging-guided chemotherapy/photothermal synergistic therapy of tumor. Adv Healthcare Mater. 2016;5(13):1627–1637.
  • Kouranos V, Dimopoulos G, Vassias A, et al. Chemotherapy-induced neutropenia in lung cancer patients: the role of antibiotic prophylaxis. Cancer Lett. 2011;313(1):9–14.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20.
  • Dozono H, Yanazume S, Nakamura H, et al. HPMA copolymer-conjugated pirarubicin in multimodal treatment of a patient with stage IV prostate cancer and extensive lung and bone metastases. Targ Oncol. 2016;11(1):101.
  • Kleynhans J, Grobler AF, Ebenhan T, et al. Radiopharmaceutical enhancement by drug delivery systems: a review. J Control Release. 2018;287:177–193.
  • Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79.
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151.
  • Sun J, Sun G, Meng X, et al. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One. 2013;8(5):e64526.
  • Kelishomi RB, Ejtemaeemehr S, Tavangar SM, et al. Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology. 2008;243(1–2):96–104.
  • Li J, Guo Y, Kuang Y, et al. Choline transporter-targeting and co-delivery system for glioma therapy. Biomaterials. 2013;34(36):9142–9148.
  • Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv. 2013;4(6):687–704.
  • Wang Y, Li P, Tran TD, et al. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016;6(2):26.
  • Wang X, Cheng R, Cheng L, et al. Lipoyl ester terminated star PLGA as a simple and smart material for controlled drug delivery application. Biomacromolecules. 2018;19(4):1368.
  • Bi Y, Liu L, Lu Y, et al. T7 peptide-functionalized PEG-PLGA micelles loading with carmustine for targeting therapy of glioma. ACS Appl Mater Interfaces. 2016;8(41):27465–27473.
  • Feng L, Yan S, Zhu Q, et al. Targeted multifunctional redox-sensitive micelles co-delivery of DNA and doxorubicin for treatment of breast cancer. J Mater Chem B. 2018;6:3372–3386.
  • Mosafer J, Teymouri M, Abnous K, et al. Study and evaluation of nucleolin-targeted delivery of magnetic PLGA-PEG nanospheres loaded with doxorubicin to C6 glioma cells compared with low nucleolin-expressing L929 cells. Mater Sci Eng C. 2017;72:123–133.
  • Kumar R, Sahoo GC, Pandey K, et al. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater Sci Eng C Mater Biol Appl. 2016;175:748–753.
  • Yang AS, Liu W, Yang XL. Serum proteins opsonization and phagocytic uptake of peg-modified PLGA nanoparticles: effect of particle size. AMR. 2011;393–395:939–942.
  • Ao M, Wang Z, Ran H, et al. Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent--a feasibility research. J Biomed Mater Res. 2010;93:551–556.
  • Zhou J, Guo D, Zhang Y, et al. Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl Mater Interfaces. 2014;6:5566.
  • Huang Y, Boamah PO, Gong J, et al. Gd (III) complex conjugate of low-molecular-weight chitosan as a contrast agent for magnetic resonance/fluorescence dual-modal imaging. Carbohyd Polym. 2016;143:288–295.
  • Lee PC, Lin CY, Peng CL, et al. Development of a controlled-release drug delivery system by encapsulating oxaliplatin into SPIO/MWNT nanoparticles for effective colon cancer therapy and magnetic resonance imaging. Biomater Sci. 2016;4:1742–1753.
  • Jun-Qing S, Wang XJ, Zhu XL, et al. Multifunctional SPIO/DOX-loaded A54 homing peptide functionalized dextran-g-PLGA micelles for tumor therapy and MR imaging. Sci Rep. 2016;6.
  • Li W, Zaloga J, Ding Y, et al. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Sci Rep. 2016;6:23140.
  • Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–876.,
  • Zhang D, Wu M, Zeng Y, et al. Chlorin e6 conjugated poly(dopamine) nanospheres as PDT/PTT dual-modal therapeutic agents for enhanced cancer therapy. ACS Appl Mater Interfaces. 2015;7:8176–8187.
  • Sun D, Ding J, Xiao C, et al. pH-responsive reversible PEGylation improves performance of antineoplastic agent. Adv Healthcare Mater. 2015;4(6):844–855.
  • Arslanlar YT, Garcia-Guinea J, Kibar R, et al. Luminescence behavior and Raman characterization of jade from Turkey. Appl Radiat Isot. 2011;69:1299–1306.
  • Du C, Qian J, Zhou L, et al. A biopolymer-drug conjugate nanotheranostics for multimodal imaging-guided synergistic cancer photothermal-chemotherapy. ACS Appl Mater Interfaces. 2017;9:31576.
  • Basel MT, Shrestha TB, Troyer DL, et al. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release. ACS Nano. 2011;5(3):2162–2175.
  • Standard practice for assessment of hemolytic properties of materials, ASTM, 2008, F756-08.
  • Kim YA, Sun YK. Measurement of PT, aPTT, and fibrinogen by automatic coagulation analyzer, ACL9000. J Clin Pathol Qual Control. 2002;23:247–252.
  • Yao Y, Zhao D, Li N, et al. Multifunctional Fe3O4@polydopamine@DNA-fueled molecular machine for magnetically targeted Intracellular Zn2+ imaging and fluorescence/MRI guided photodynamic-photothermal therapy. Anal Chem. 2019;91:7850-7857.
  • Maayah ZH, Zhang T, Forrest ML, et al. DOX-Vit D, a novel doxorubicin delivery approach, inhibits human osteosarcoma cell proliferation by inducing apoptosis while inhibiting Akt and mTOR signaling pathways. Pharmaceutics. 2018;10(3):144.
  • Tang H, Yuan G, Li P, et al. In vivo targeted, responsive and synergistic cancer nanotheranostics by MRI-guided synergistic HIFU ablation and chemotherapy. ACS Appl Mater Interfaces. 2018;10, acsami.8b01967.
  • Wei H, Dawei C, Li J, et al. A mussel-derived one component adhesive coacervate. Acta Biomaterialia. 2014;10(4):1663–1670.