1,986
Views
11
CrossRef citations to date
0
Altmetric
Preliminary Communication

Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines

, , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 1214-1221 | Received 16 Feb 2020, Accepted 22 Jun 2020, Published online: 17 Sep 2020

References

  • Daraee H, Eatemadi A, Abbasi E, et al. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):410–422.
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681.
  • Andreou C, Pal S, Rotter L, et al. Molecular imaging in nanotechnology and theranostics. Mol Imaging Biol. 2017;19(3):363–372.
  • Jahangirian H, Lemraski EG, Webster TJ, et al. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957–2978.
  • Karaman DŞ, Sarparanta MP, Rosenholm JM, et al. Multimodality imaging of silica and silicon materials in vivo. Adv Mater. 2018;30(24):1703651.
  • Zheng K, Setyawati MI, Leong DT, et al. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–6910.
  • Zhang XD, Luo Z, Chen J, et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep. 2015;5:1–7.
  • Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale. 2015;7(5):1549–1565.
  • Negishi Y, Chaki NK, Shichibu Y, et al. Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. J Am Chem Soc. 2007;129(37):11322–11323.
  • Purohit R, Singh S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int J Nanomed. 2018;13:15–17.
  • Chen LY, Wang CW, Yuan Z, et al. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–229.
  • Zhou F, Feng B, Yu H, et al. Cisplatin prodrug-conjugated gold nanocluster for fluorescence imaging and targeted therapy of the breast cancer. Theranostics. 2016;6(5):679–687.
  • Liang G, Xiao L. Gd3+-Functionalized gold nanoclusters for fluorescence-magnetic resonance bimodal imaging. Biomater Sci. 2017;5(10):2122–2130.
  • Liang G, Jin X, Zhang S, et al. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95–104.
  • Zhang XD, Luo Z, Chen J, et al. Ultrasmall Au(10-12)(SG)(10-12) nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater Weinheim. 2014;26(26):4565–4568.
  • Riaz N, Wolden SL, Gelblum DY, et al. HHS public access. 2016;118(24):6072–6078.
  • Chen S, Ingram RS, Hostetler MJ, et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science. 1998;280(5372):2098–2101.
  • Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58(1):409–431.
  • Matulionyte M, Dapkute D, Budenaite L, et al. Photoluminescent gold nanoclusters in cancer cells: cellular uptake, toxicity, and generation of reactive oxygen species. Int J Mol Sci. 2017;18(2):1–17.
  • Drude N, Tienken L, Mottaghy FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods. 2017;130:14–22.
  • Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv. 2014;11(10):1661–1680.
  • Kato H. Production of gold-198 grains. Gold Bull. 1978;11(3):86–87.
  • Hosseini SF, Sadeghi M, Aboudzadeh MR, et al. Production and modeling of radioactive gold nanoparticles in Tehran research reactor. Appl Radiat Isot. 2016;118:361–365.
  • Volkert WA, Goeckeler WF, Ehrhardt GJ, et al. Therapeutic radionuclides: production and decay property considerations. J Nuclear Med. 1991;32:147–185.
  • Müller C, van der Meulen NP, Benešová M, et al. Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising α-particle, β-particle, and auger electron emitters. J Nucl Med. 2017; 58( 2):91S–96S.
  • Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–366.
  • Sgouros G. Radiopharmaceutical therapy. Health Phys. 2019;116(2):175–178.
  • Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–510.
  • Kumar S, Jin R. Water-soluble Au25(Capt)18 nanoclusters: synthesis, thermal stability, and optical properties. Nanoscale. 2012;4(14):4222–4227.
  • Helal-Neto E, de Barros AOS, Saldanha-Gama R, et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int J Mol Sci. 2020;21:230.
  • Nunes SS, Outeiro-Bernstein MAFD, Juliano L, et al. Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol. 2008;214(3):828–837.
  • Moia VM, Leal Portilho F, Almeida Pádua T, et al. Lycopene used as anti-inflammatory nanodrug for the treatment of rheumathoid arthritis: animal assay, pharmacokinetics, ABC transporter and tissue deposition. Colloids Surf B Biointerfaces. 2020;188:110814.
  • Jögi A, Vaapil M, Johansson M, et al. Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci. 2012;117(2):217–224.
  • Friedl P, Maaser K, Klein CE, et al. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 1997;57(10):2061–2070.
  • Tai S, Sun Y, Squires JM, et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate. 2011;71(15):1668–1679.
  • Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–527.
  • Verrotti A, Iapadre G, Di Donato G, et al. Pharmacokinetic considerations for anti-epileptic drugs in children. Expert Opin Drug Metab Toxicol. 2019;15:199–211.
  • Gaudinski MR, Coates EE, Novik L, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet. 2019;393(1074): 889–898.
  • Iram SH, Gruber SJ, Raguimova ON, et al. ATP-binding cassette transporter structure changes detected by intramolecular fluorescence energy transfer for high-throughput screening. Mol Pharmacol. 2015;(1):84–94.
  • Iram SH, Cole SP. Differential functional rescue of Lys(513) and Lys(516) processing mutants of MRP1 (ABCC1) by chemical chaperones reveals different domain-domain interactions of the transporter. Biochim Biophys Acta. 2014;1838(3):756–765.
  • Peterson BG, Tan KW, Osa-Andrews B, et al. High-content screening of clinically tested anticancer drugs identifies novel inhibitors of human MRP1 (ABCC1). Pharmacol Res. 2017;119:313–326.
  • Tan KW, Osa-Andrews B, Sampson A, et al. Calcitriol and calcipotriol modulate transport activity of ABC transporters and exhibit selective cytotoxicity in MRP1-overexpressing cells. Drug Metab Disposit. 2018;(12):1856–1866.
  • Wu Z, Jin R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010;10(7):2568–2573.