3,914
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Efficiency of Bacillus subtilis metabolism of sugar alcohols governs its probiotic effect against cariogenic Streptococcus mutans

, &
Pages 1222-1230 | Received 15 Aug 2019, Accepted 08 Sep 2020, Published online: 21 Sep 2020

References

  • Hong HA, Duc LH, Cutting SM. The use of bacterial spore formers as probiotics. FEMS Microbiol Rev. 2005;29(4):813–835.
  • Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28(2):214–220.
  • Mazza P. The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm. 1994;133(1):3–18.
  • Hong H, Huang JM, Khaneja R, et al. The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol. 2008;105(2):510–520.
  • Spinosa MR, Braccini T, Ricca E, et al. On the fate of ingested Bacillus spores. Res Microbiol. 2000;151(5):361–368.
  • Sanders M, Morelli L, Tompkins T. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Comp Rev Food Sci Food Safety. 2003;2(3):101–110.
  • Haukioja A. Probiotics and oral health. Eur J Dent. 2010;4(3):348–355.
  • Saxelin M, Tynkkynen S, Mattila-Sandholm T, et al. Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol. 2005;16(2):204–211.
  • de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66. doi:10.1007/10_2008_097
  • Näse L, Hatakka K, Savilahti E, et al. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412–420.
  • Ahola A, Yli-Knuuttila H, Suomalainen T, et al. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol. 2002;47(11):799–804.
  • Caglar E, Kavaloglu Cildir S, Ergeneli S, et al. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand. 2006;64(5):314–318.
  • Caglar E, Kavaloglu S, Kuscu O, et al. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Invest. 2007;11(4):425–429.
  • Twetman S, Derawi B, Keller M, et al. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand. 2009;67(1):19–24.
  • Tsubura S, Mizunuma H, Ishikawa S, et al. The effect of Bacillus subtilis mouth rinsing in patients with periodontitis. Eur J Clin Microbiol Infect Dis. 2009;28(11):1353–1356.
  • Burne R. Oral streptococci. products of their environment. J Dent Res. 1998;77(3):445–452.
  • Ajdic D, McShan WM, McLaughlin RE, et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen [Research Support, U.S. Gov't, P.H.S.]. Proc Natl Acad Sci Usa. 2002;99(22):14434–14439.
  • Lemos JA, Quivey RG, Jr Koo H, et al. Streptococcus mutans: a new Gram-positive paradigm? Microbiology (Reading)). 2013;159(Pt 3):436–445.
  • Muñoz-Sandoval C, Muñoz-Cifuentes MJ, Giacaman RA, et al. Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization. Pediatric Dentistry. 2012;34(7):197E–201E.
  • Liu C, Niu Y, Zhou X, et al. Hyperosmotic response of streptococcus mutans: from microscopic physiology to transcriptomic profile. BMC Microbiol. 2013;13(1):275
  • Giacaman R. Sugars and beyond. The role of sugars and the other nutrients and their potential impact on caries. Oral Dis. 2018;24(7):1185–1197.
  • Boyd DA, Thevenot T, Gumbmann M, et al. Identification of the operon for the sorbitol (glucitol) phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus mutans. Infect Immun. 2000;68(2):925–930.
  • Mäkinen KK. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med Princ Pract. 2011;20(4):303–320.
  • Shemesh M, Tam A, Feldman M, et al. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res. 2006;341(12):2090–2097.
  • Yasbin RE, Young FE. Transduction in Bacillus subtilis by bacteriophage SPP1. J Virol. 1974;14(6):1343–1348.
  • Harwood C, Cutting S. Chemically defined growth media and supplements. Chichester, UK: Wiley; 1990.
  • Assaf D, Steinberg D, Shemesh M. Lactose triggers biofilm formation by Streptococcus mutans. Int Dairy J. 2015;42:51–57.
  • Belli W, Marquis R. Catabolite modification of acid tolerance of Streptococcus mutans GS-5. Oral Microbiol Immunol. 1994;9(1):29–34.
  • Duanis-Assaf D, Duanis-Assaf T, Zeng G, et al. Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Sci Rep. 2018;8(1):9350
  • Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 1998;30(2):285–293.
  • Stepanović S, Vuković D, Dakić I, et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–179.
  • Tam A, Shemesh M, Wormser U, et al. Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. J Antimicrob Chemother. 2006;57(5):865–871.
  • Shemesh M, Tam A, Steinberg D. Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol. 2007;56(Pt 11):1528–1535.
  • Feldman M, Shenderovich J, Lavy E, et al. A sustained-release membrane of thiazolidinedione-8: effect on formation of a candida/bacteria mixed biofilm on hydroxyapatite in a continuous flow model. BioMed Res Int. 2017;2017:1–9.
  • Urbanczyk-Wochniak E, Leisse A, Roessner-Tunali U, et al. Expression of a bacterial xylose isomerase in potato tubers results in an altered hexose composition and a consequent induction of metabolism. Plant Cell Physiol. 2003;44(12):1359–1367.
  • Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc. 2006;1(1):387–396.
  • Ng K, Ye R, Wu X-C, et al. Sorbitol dehydrogenase from Bacillus subtilis. Purification, characterization, and gene cloning. J Biol Chem. 1992;267(35):24989–24994.
  • Horwitz SB. D-Mannitol 1-phosphate dehydrogenase and d-sorbitol dehydrogenase from Bacillus subtilis. Methods Enzymol. 1966;9:155–159. Vol. Elsevier;
  • Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria–A review. Acta Histochem. 2018;120(4):303–311.
  • Cueva C, Moreno-Arribas MV, Martín-Álvarez PJ, et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol. 2010;161(5):372–382.
  • Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36(5):990–1004.
  • Burmølle M, Ren D, Bjarnsholt T, et al. Interactions in multispecies biofilms: do they actually matter? Trends Microbiol. 2014;22(2):84–91.
  • Fouet A, Arnaud M, Klier A, et al. Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci Usa. 1987;84(24):8773–8777.
  • Fall R, Kinsinger RF, Wheeler KA. A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. Syst Appl Microbiol. 2004;27(3):372–379.
  • Vullo DL, Coto CE, Sineriz F. Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of Vernonia herbacea (Vell Rusby). Appl Environ Microbiol. 1991;57(8):2392–2394.
  • Beauregard PB, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci Usa. 2013;110(17):E1621–E1630.
  • Parvaiz A, Satyawati S. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ. 2008;54(No. 3):89–99.
  • Dills SS, Seno S. Regulation of hexitol catabolism in Streptococcus mutans. J Bacteriol. 1983;153(2):861–866.
  • Brown A, Wittenberger C. Mannitol and sorbitol catabolism in Streptococcus mutans. Arch Oral Biol. 1973;18(1):117–IN19.
  • Slee A, Tanzer J. The repressible metabolism of sorbitol (D-glucitol) by intact cells of the oral plaque-forming bacterium Streptococcus mutans. Arch Oral Biol. 1983;28(9):839–845.
  • Svensäter G. Sorbitol transport and metabolism by oral streptococci. Swed Dent J Suppl. 1991;79:1–103.
  • Durso SC, Vieira L, Cruz J, et al. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms. Caries Res. 2014;48(3):214–222.
  • Lopez J, Thoms B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J Bacteriol. 1977;129(1):217–224.
  • Watanabe S, Hamano M, Kakeshita H, et al. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: possible cooperation of mtl and gut operons. J Bacteriol. 2003;185(16):4816–4824.
  • Heravi KM, Wenzel M, Altenbuchner J. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact. 2011;10(1):83.