1,453
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of benzo[a]furo[2, 3-c]phenazine derivatives through an efficient, rapid and via microwave irradiation under solvent-free conditions catalyzed by H3PW12O40@Fe3O4-ZnO for high-performance removal of methylene blue

, ORCID Icon &
Pages 250-260 | Received 06 Nov 2020, Accepted 15 Feb 2021, Published online: 11 Mar 2021

References

  • Zhang G, Chen D, Li N, et al. Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl Catal B Environ. 2019;250:313–324.
  • Thangavel S, Krishnamoorthy K, Kim SJ, et al. Designing ZnS decorated reduced graphene-oxide nanohybrid via microwave route and their application in photocatalysis. J Alloy Comp. 2016;683:456–462.
  • Moussa H, Girot E, Mozet K, et al. ZnO rods/reduced graphene oxide composites prepared via a solvothermal reaction for efficient sunlight-driven photocatalysis. Appl Catal B Environ. 2016;185:11–21.
  • Alberti S, Caratto V, Peddis D, et al. Synthesis and characterization of a new photocatalyst based on TiO2 nanoparticles supported on a magnetic zeolite obtained from iron and steel industrial waste. J Alloy Comp. 2019;797:820–825.
  • Deng C, Hong R, Jing M, et al. Photocatalytic performance of TiO2 thin film decorated with Cu2O nanoparticles by laser ablation. Opt Mater. 2019;94:130–137.
  • Chiarello GL, Dozzi MV, Selli E. TiO2-based materials for photocatalytic hydrogen production. J Energy Chem. 2017;26(2):250–258.
  • Zheng K, Liu H, Nie C, et al. Controllable synthesis of honeycomb-structured ZnO nanomaterials for photocatalytic degradation of methylene blue. Mater Lett. 2019;253:30–33.
  • Ye Y, Bruning H, Li X, et al. Significant enhancement of micropollutant photocatalytic degradation using a TiO2 nanotube array photoanode based photocatalytic fuel cell. Chem Eng J. 2018;354:553–562.
  • Yu JG, Yu XX. Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol. 2008;42(13):4902–4907.
  • Ma SS, Xue JJ, Zhou YM, et al. Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J Mater Chem. 2014;2(20):7272–7280.
  • Niknam K, Saberi D, Sadegheyan M, et al. Silica-bonded S-sulfonic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,40-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahed Lett. 2010;51(4):692–694.
  • Shirini F, Zolfigol MA, Mohammadi K. Silica sulfuric acid as a mild and efficient reagent for the acetylation of alcohols in solution and under solvent free conditions. Korean Chem Soc. 2004;25:325–327.
  • Wu H, Shen Y, Fan L-y, et al. Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid. Tetrahedron. 2007;63(11):2404–2408.
  • Bloxham J, Dell CP, Smith C. Preparation of some new benzylidenemalononitriles by an SNAr reaction: application to naphtho[1,2-b]pyran synthesis. Heterocycles. 1994;38(2):399–308.
  • Pan L, Olson DH, Ciemnolonski LR, et al. Separation of hydrocarbons with a microporous metal-organic framework. Angew Chem. 2006;118(4):632–635.
  • Jhung SH, Lee J-H, Yoon JW, et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv Mater. 2007;19(1):121–124.
  • Tong M, Liu D, Yang Q, et al. Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J Mater Chem A. 2013;1(30):8534–8537.
  • Zhou M, Wu YN, Qiao J, et al. The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al)). J Colloid Interface Sci. 2013;405:157–163.
  • Jung BK, Hasan Z, Jhung SH. Adsorptive removal of 2,4- dichlorophenoxyacetic acid (2,4-D) from water with a metal-organic framework. Chem Eng J. 2013; 234:99–105.
  • Maes M, Schouteden S, Alaerts L, et al. Extracting organic contaminants from water using the metal-organic framework CrIII(OH)·{O2C-C6H4-CO2}. Phys Chem Chem Phys. 2011;13(13):5587–5589.
  • Veisi V, Ozturk T, Karmakar B, et al. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2–NH2 as magnetic catalyst in Suzuki–Miyaura coupling and 4-nitrophenol reduction. Carbohydr Polym. 2020;235:115966–115974.
  • Zhang W, Veisi H, Sharifi R, et al. Fabrication of Pd NPs on pectin-modified Fe3O4 NPs: a magnetically retrievable nanocatalyst for efficient C-C and C-N cross coupling reactions and an investigation of its cardiovascular protective effects. Int J Biol Macromol. 2020;160:1252–1256.
  • Tamoradi T, Veisi H, Karmakar B, et al. A competent green methodology for the synthesis of aryl thioethers and 1H-tetrazole over magnetically retrievable novel CoFe2O4@l-asparagine anchored Cu, Ni nanocatalyst. Mater Sci Eng C Mater Biol Appl. 2020;107:110260–110268.
  • Veisi H, Mohammadi L, Hemmati S, et al. In situ immobilized silver nanoparticles on rubia tinctorum extractcoated ultrasmall iron oxide nanoparticles: an efficient nanocatalyst with magnetic recyclability for synthesis of propargylamines by A3 coupling reaction. ACS Omega. 2019; 4(9):13991–14003
  • Veisi H, Tamoradi T, Rashtiani A, et al. Palladium nanoparticles anchored polydopamine-coated graphene oxide/Fe3O4 nanoparticles (GO/Fe3O4@PDA/Pd) as a novel recyclable heterogeneous catalyst in the facile cyanation of haloarenes using K4[Fe(CN)6] as cyanide source. J Ind Eng Chem. 2020; 90:379–388.
  • Khurana JM, Chaudhary A, Lumb A, et al. An expedient four-component domino protocol for the synthesis of novel benzo[a]phenazine annulated heterocycles and their photophysical studies. Green Chem. 2012;14(8):2321–2327.
  • Saluja P, Chaudhary A, Khurana JM. Synthesis of novel fluorescent benzo[a]pyrano[2,3-c] phenazine and benzo[a]chromeno[2,3-c]phenazine derivatives via facile four-component domino protocol. Tetra Lett. 2014;55(23):3431–3435.
  • Rajeswari M, Khanna G, Chaudhary A, et al. Multicomponent domino process for the synthesis of some novel benzo[a]chromenophenazine fused ring systems using H2SO4, phosphotungstic acid, and[NMP]H2PO4. Synth Commun. 2015;45(12):1426–1432.