6,904
Views
19
CrossRef citations to date
0
Altmetric
Review

Nano-hydroxyapatite as a delivery system: overview and advancements

ORCID Icon, , , , ORCID Icon, & show all
Pages 717-727 | Received 12 Nov 2020, Accepted 05 Dec 2021, Published online: 15 Dec 2021

References

  • Dorozhkin SV. Calcium orthophosphate-based bioceramics. Materials. 2013;6(9):3840–3942.
  • Liu Q, Huang S, Matinlinna JP, et al. Insight into biological apatite: physiochemical properties and preparation approaches. Biomed Res Int. 2013;2013:929748.
  • Ginebra M-P, Canal C, Espanol M, et al. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev. 2012;64(12):1090–1110.
  • Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater. 2019;93:135–151.
  • Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: a literature review. Adv Drug Deliv Rev. 2017;112:88–100.
  • El-Khouri RJ, Szamocki R, Sergeeva Y, et al. Multifunctional layer-by-layer architectures for biological applications. Funct Polym Film. 2011;2:11–58.
  • Munir MU, Ihsan A, Sarwar Y, et al. Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features. Int J Pharm. 2018;544(1):112–120..
  • He Q, Pan L, Wang Y, et al. Bioinspired synthesis of large-pore, mesoporous hydroxyapatite nanocrystals for the controlled release of large pharmaceutics. Cryst Growth Des. 2015;15(2):723–731.
  • Munir MU, Ihsan A, Javed I, et al. Controllably biodegradable hydroxyapatite nanostructures for cefazolin delivery against antibacterial resistance. ACS Omega. 2019;4(4):7524–7532..
  • Jain AK, Panchagnula R. Skeletal drug delivery systems. Int J Pharm. 2000;206(1–2):1–12.
  • Chen JS, Sambrook PN. Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol. 2011;8(2):81–91.
  • Cremers S, Drake MT, Ebetino FH, et al. Pharmacology of bisphosphonates. Br J Clin Pharmacol. 2019;85(6):1052–1062.
  • van Houdt CIA, Gabbai-Armelin PR, Lopez-Perez PM, et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci Rep. 2018;8:1–13.
  • Bose S, Vu AA, Emshadi K, et al. Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater Sci Eng C Mater Biol Appl. 2018;88:166–171.
  • Bigi A, Boanini E, Capuccini C, et al. Biofunctional alendronate-hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials. 2009;30(31):6168–6177.
  • Bigi A, Boanini E. Functionalized biomimetic calcium phosphates for bone tissue repair. J Appl Biomater Funct Mater. 2017;15(4):e313–e325.
  • Vargas-Becerril N, Patiño-Carachure C, Rodriguez-Lorenzo LM, et al. Synthesis of hybrid compounds apatite–alendronate by reactive milling and effects on the structure and morphology of the apatite phase. Ceram Int. 2013;39(4):3921–3929.
  • Chen S, Guo R, Xie C, et al. Biomimetic mineralization of nanocrystalline hydroxyapatites on aminated modified polylactic acid microspheres to develop a novel drug delivery system for alendronate. Mater Sci Eng C Mater Biol Appl. 2020;110:110655.
  • Kim CW, Yun Y-P, Lee HJ, et al. In situ fabrication of alendronate-loaded calcium phosphate microspheres: controlled release for inhibition of osteoclastogenesis. J Control Release. 2010;147(1):45–53.
  • Errassifi F, Sarda S, Barroug A, et al. Infrared, Raman and NMR investigations of risedronate adsorption on nanocrystalline apatites. J Colloid Interface Sci. 2014;420:101–111.
  • Li D, Zhu Y, Liang Z. Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery. Mater Res Bull. 2013;48(6):2201–2204.
  • Boanini E, Torricelli P, Gazzano M, et al. The effect of zoledronate-hydroxyapatite nanocomposites on osteoclasts and osteoblast-like cells in vitro. Biomaterials. 2012;33(2):722–730.
  • Boanini E, Torricelli P, Gazzano M, et al. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell responses. Biomaterials. 2014;35(21):5619–5626.
  • Boanini E, Torricelli P, Sima F, et al. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses. J Colloid Interface Sci. 2015;448:1–7.
  • Emoto M, Naganuma Y, Choijamts B, et al. Novel chemoembolization using calcium-phosphate ceramic microsphere incorporating TNP-470, an anti-angiogenic agent . Cancer Sci. 2010;101(4):984–990.
  • Quintanilha JCF, de Sousa VM, Visacri MB, et al. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity. Cancer Chemother Pharmacol. 2017;80(2):223–233.
  • Marques C, Ferreira JMF, Andronescu E, et al. Multifunctional materials for bone cancer treatment. Int J Nanomedicine. 2014;9:2713–2725.
  • Sumathra M, Sadasivuni KK, Kumar SS, et al. Cisplatin-loaded graphene oxide/chitosan/hydroxyapatite composite as a promising tool for osteosarcoma-affected bone regeneration. ACS Omega. 2018;3(11):14620–14633.
  • Nadar RA, Asokan N, Degli Esposti L, et al. Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. Nanoscale. 2020;12(25):13582–13594.
  • Abdel-Bary AS, Tolan DA, Nassar MY, et al. Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: Synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int J Biol Macromol. 2020;154:621–633.
  • Benedetti M, De Castro F, Romano A, et al. Adsorption of the cis-[Pt(NH3)2(P2O7)](2-) (phosphaplatin) on hydroxyapatite nanocrystals as a smart way to selectively release activated cis-[Pt(NH3)2Cl2] (cisplatin) in tumor tissues. J Inorg Biochem. 2016;157:73–79.
  • Kim H, Mondal S, Bharathiraja S, et al. Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int. 2018;44(6):6062–6071.
  • Xiong H, Du S, Ni J, et al. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials. 2016;94:70–83.
  • Meshkini A, Oveisi H. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells. Colloids Surf B Biointerfaces. 2017;158:319–330.
  • Sun H, Liu S, Zeng X, et al. Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate. J Mater Sci Mater Med. 2017;28(10):158.
  • Giacomini D, Torricelli P, Gentilomi GA, et al. Monocyclic β-lactams loaded on hydroxyapatite: new biomaterials with enhanced antibacterial activity against resistant strains. Sci Rep. 2017;7:1–12.
  • ter Boo G-JA, Grijpma DW, Moriarty TF, et al. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery . Biomaterials. 2015;52:113–125.
  • Uskokovic V. Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2015;32(1):1–59.
  • Dash A, Cudworth G. II, Therapeutic applications of implantable drug delivery systems. J Pharmacol Toxicol Methods. 1998;40(1):1–12.
  • Rauschmann MA, Wichelhaus TA, Stirnal V, et al. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26(15):2677–2684.
  • Makarov C, Cohen V, Raz-Pasteur A, et al. In vitro elution of vancomycin from biodegradable osteoconductive calcium phosphate-polycaprolactone composite beads for treatment of osteomyelitis. Eur J Pharm Sci. 2014;62:49–56.
  • Butini ME, Cabric S, Trampuz A, et al. In vitro anti-biofilm activity of a biphasic gentamicin-loaded calcium sulfate/hydroxyapatite bone graft substitute. Colloids Surf B Biointerfaces. 2018;161:252–260.
  • Munir MU, Ahmed A, Usman M, et al. Recent advances in nanotechnology-aided materials in combating microbial resistance and functioning as antibiotics substitutes. Int J Nanomedicine. 2020;15:7329–7358.
  • Yu M, Zhou K, Li Z, et al. Preparation, characterization and in vitro gentamicin release of porous HA microspheres. Mater Sci Eng C Mater Biol Appl. 2014;45:306–312.
  • Madhumathi K, Rubaiya Y, Doble M, et al. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies. Drug Deliv Transl Res. 2018;8(5):1066–1077.
  • Schnieders J, Gbureck U, Thull R, et al. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement. Biomaterials. 2006;27(23):4239–4249.
  • Martínez-Vázquez FJ, Cabañas MV, Paris JL, et al. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater. 2015;15:200–209.
  • Jiang J-L, Li Y-F, Fang T-L, et al. Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res. 2012;61(3):207–215.
  • Yu J, Chu X, Cai Y, et al. Preparation and characterization of antimicrobial nano-hydroxyapatite composites. Mater Sci Eng C Mater Biol Appl. 2014;37:54–59.
  • Labay C, Buxadera-Palomero J, Avilés M, et al. Modulation of release kinetics by plasma polymerization of ampicillin-loaded β-TCP ceramics. J Phys D: Appl Phys. 2016;49(30):304004.
  • Queiroz AC, Santos JD, Monteiro FJ, et al. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials. 2001;22(11):1393–1400.
  • Kang M-K, Lee S-B, Moon S-K, et al. The biomimetic apatite-cefalotin coatings on modified titanium. Dent Mater J. 2012;31(1):98–105.
  • Forsgren J, Brohede U, Strømme M, et al. Co-loading of bisphosphonates and antibiotics to a biomimetic hydroxyapatite coating. Biotechnol Lett. 2011;33(6):1265–1268.
  • Liu H, Zhang L, Shi P, et al. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res B Appl Biomater. 2010;95(1):36–46.
  • Sultan M. Hydroxyapatite/polyurethane composites as promising biomaterials. Chem Pap. 2018;72(10):2375–2395.
  • Trofimov AD, Ivanova AA, Zyuzin MV, et al. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives. Pharmaceutics. 2018;10(4):167.
  • Li S, Wang K, Chang K-CA, et al. Preparation and evaluation of nano-hydroxyapatite/poly (styrene-divinylbenzene) porous microsphere for aspirin carrier. Sci China Chem. 2012;55(6):1134–1139.
  • Čalija B, Milić J, Cekić N, et al. Chitosan oligosaccharide as prospective cross-linking agent for naproxen-loaded Ca-alginate microparticles with improved pH sensitivity. Drug Dev Ind Pharm. 2013;39(1):77–88.
  • Xu Q, Tanaka Y, Czernuszka JT. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes. Biomaterials. 2007;28(16):2687–2694.
  • Sumathra M, Munusamy MA, Alarfaj AA, et al. Osteoblast response to vitamin D3 loaded cellulose enriched hydroxyapatite mesoporous silica nanoparticles composite. Biomed Pharmacother. 2018;103:858–868.
  • Otsuka M, Hirano R. Bone cell activity responsive drug release from biodegradable apatite/collagen nano-composite cements-in vitro dissolution medium responsive vitamin K2 release. Colloids Surf B Biointerfaces. 2011;85(2):338–342.
  • Cosijns A, Vervaet C, Luyten J, et al. Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur J Pharm Biopharm. 2007;67(2):498–506.
  • Chen J, Gao P, Yuan S, et al. Oncolytic adenovirus complexes coated with lipids and calcium phosphate for cancer gene therapy. ACS Nano. 2016;10(12):11548–11560.
  • Zhao X-Y, Zhu Y-J, Chen F, et al. Nanosheet-assembled hierarchical nanostructures of hydroxyapatite: surfactant-free microwave-hydrothermal rapid synthesis, protein/DNA adsorption and pH-controlled release. CrystEngComm. 2013;15(1):206–212.
  • Liu T, Tang A, Zhang G, et al. Calcium phosphate nanoparticles as a novel nonviral vector for efficient transfection of DNA in cancer gene therapy. Cancer Biother Radiopharm. 2005;20(2):141–149.
  • Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn. 2005;5(6):893–905.
  • Truong-Le VL, Walsh SM, Schweibert E, et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys. 1999;361(1):47–56.
  • Bisht S, Bhakta G, Mitra S, et al. pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm. 2005;288(1):157–168.
  • Khosravi DK, Mozafari MR, Rashidi L, et al. Calcium based non-viral gene delivery: an overview of methodology and applications. Acta Med Iran. 2010;48(3):133–141.
  • Zhao M, Li J, Chen D, et al. A valid bisphosphonate modified calcium phosphate-based gene delivery system: increased stability and enhanced transfection efficiency in vitro and in vivo. Pharmaceutics. 2019;11:468.
  • Chen Y, Chen S, Kawazoe N, et al. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks. Sci Rep. 2018;8:1–12.
  • Fischer J, Kolk A, Pautke C, et al. Future of local bone regeneration – protein versus gene therapy. J Craniomaxillofac Surg. 2011;39(1):54–64.
  • Frede A, Neuhaus B, Klopfleisch R, et al. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release. 2016;222:86–96.
  • Uddin MH, Matsumoto T, Ishihara S, et al. Apatite containing aspartic acid for selective protein loading. J Dent Res. 2010;89(5):488–492.
  • Galindo TGP, Yamada I, Yamada S, et al. Studies on preparation of surfactant-assisted elliptical hydroxyapatite nanoparticles and their protein-interactive ability. Mater Chem Phys. 2019;221:367–376.
  • Albernaz M. D S, Ospina CA, Rossi AM, et al. Radiolabelled nanohydroxyapatite with 99mTc: perspectives to nanoradiopharmaceuticals construction. Artif Cells Nanomed Biotechnol. 2014;42(2):88–91.
  • Kucka J, Hrubý M, Konák C, et al. Astatination of nanoparticles containing silver as possible carriers of 211At. Appl Radiat Isot. 2006;64(2):201–206.
  • Cędrowska E, Pruszynski M, Majkowska-Pilip A, et al. Functionalized TiO2 nanoparticles labelled with 225 Ac for targeted alpha radionuclide therapy. J Nanoparticle Res. 2018;20:1–10.
  • Reissig F, Hübner R, Steinbach J, et al. Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg Chem Front. 2019;6(6):1341–1349.
  • Sandhöfer B, Meckel M, Delgado-López JM, et al. Synthesis and preliminary in vivo evaluation of well-dispersed biomimetic nanocrystalline apatites labeled with positron emission tomographic imaging agents. ACS Appl Mater Interfaces. 2015;7(19):10623–10633.
  • Chakraborty S, Vimalnath KV, Rajeswari A, et al. Preparation, evaluation, and first clinical use of 177Lu‐labeled hydroxyapatite (HA) particles in the treatment of rheumatoid arthritis: utility of cold kits for convenient dose formulation at hospital radiopharmacy. J Label Compd Radiopharm. 2014;57(7):453–462.
  • Das T, Banerjee S. Theranostic applications of lutetium-177 in radionuclide therapy. Curr Radiopharm. 2016;9(1):94–101.
  • Severin AV, Vasiliev AN, Gopin AV, et al. Dynamics of sorption—desorption of 223 Ra therapeutic α-Emitter on granulated hydroxyapatite. Radiochemistry. 2019;61(3):339–346.
  • Ma O, Al N, Ap O, et al. Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Bull Russ State Med Univ. 2018; 7(6):86–93.
  • Berdeguez MBT, Thomas S, Medeiros S, et al. Dosimetry in radiosynoviorthesis: 90Y VS. 153Sm. Health Phys. 2018;114(1):1–6.
  • Chakraborty S, Das T, Chirayil V, et al. Erbium-169 labeled hydroxyapatite particulates for use in radiation synovectomy of digital joints–a preliminary investigation. Radiochim Acta. 2014;102(5):443–450.
  • Rigali MJ, Brady PV, Moore RC. Radionuclide removal by apatite. Am Mineral. 2016;101(12):2611–2619.
  • Suchánková P, Kukleva E, Nykl E, et al. Hydroxyapatite and titanium dioxide nanoparticles: Radiolabelling and in vitro stability of prospective theranostic nanocarriers for 223Ra and 99mTc. Nanomaterials. 2020;10(9):1632.
  • Severin AV, Vasiliev AN, Gopin AV, et al. Sorption and diffusion behavior of actinium (iii) ions in contact with hydroxyapatite as a transporter of medical radionuclides. Russ Chem Bull. 2020;69(12):2286–2293.