1,425
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modulating the lipid profile of blastocyst cell membrane with DPPC multilamellar vesicles

, ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 158-167 | Received 18 Nov 2021, Accepted 05 Jun 2022, Published online: 17 Jun 2022

References

  • Marsico TV, de Camargo J, Valente RS, et al. Embryo competence and cryosurvival: molecular and cellular features. Anim Reprod. 2019;16(3):423–439.
  • Fernandes GO, de Faria OAC, Sifuentes DN, et al. Electrospray mass spectrometry analysis of blastocoel fluid as a potential tool for bovine embryo selection. J Assist Reprod Genet. 2021;38(8):2209–2217.
  • Vajta G, Kuwayama M. Improving cryopreservation systems. Theriogenology. 2006;65(1):236–244.
  • Seidel GE. Jr. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology. 2006;65(1):228–235.
  • Van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–124.
  • Bartz R, Li WH, Venables B, et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res. 2007;48(4):837–847.
  • Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281–296.
  • Yamashita A, Hayashi Y, Nemoto-Sasaki Y, et al. Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res. 2014;53:18–81.
  • Ohvo-Rekila H, Ramstedt B, Leppimaki P, et al. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41(1):66–97.
  • Edidin M. Lipids on the frontier: a century of cell-membrane bilayers. Nat Rev Mol Cell Biol. 2003;4(5):414–418.
  • Marsico TV, Sales JNS, Ferreira CR, et al. Characteristic MALDI-MS lipid profiles of Gir, Holstein and crossbred (Gir x Holstein) oocytes recovered by ovum pick-up. Livest Sci. 2021;243:104380.
  • Amatore C, Arbault S, Bonifas I, et al. Dynamics of full fusion during vesicular exocytotic events: release of adrenaline by chromaffin cells. ChemPhysChem. 2003;4(2):147–154.
  • Morshed A, Karawdeniya BI, Bandara Y, et al. Mechanical characterization of vesicles and cells: a review. Electrophoresis. 2020;41(7-8):449–470.
  • Zhang W, Böttger R, Qin Z, et al. Phospholipid-free small unilamellar vesicles for drug targeting to cells in the liver. Small. 2019;15(43):e1901782.
  • Chacko IA, Ghate VM, Dsouza L, et al. Lipid vesicles: a versatile drug delivery platform for dermal and transdermal applications. Colloids Surf B Biointerfaces. 2020;195:111262.
  • Pagano RE, Weinstein JN. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468.
  • Boriachek K, Islam MN, Möller A, et al. Biological functions and current advances in isolation and detection strategies for exosome nanovesicles. Small. 2018;14(6):1702153.
  • Seneda MM, Esper CR, Garcia JM, et al. Relationship between follicle size and ultrasound-guided transvaginal oocyte recovery. Anim Reprod Sci. 2001;67(1–2):37–43.
  • Bó GA, Mapletoft RJ. Evaluation and classification of bovine embryos. Anim Reprod. 2013;10(3):344–348.
  • Razza EM, Satrapa RA, Silva CF, et al. Lethal effect of high concentrations of parecoxib and flunixin meglumine on the in vitro culture of bovine embryos. Anim Reprod. 2012;9(2):80–85.
  • Ferreira CR, Saraiva SA, Catharino RR, et al. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res. 2010;51(5):1218–1227.
  • Sudano MJ, Santos VG, Tata A, et al. Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biol Reprod. 2012;87(6):130.
  • Tata A, Sudano MJ, Santos VG, et al. Optimal single-embryo mass spectrometry fingerprinting. J Mass Spectrom. 2013;48(7):844–849.
  • Leão BCS, Rocha-Frigoni NAS, Cabral EC, et al. Membrane lipid profile monitored by mass spectrometry detected differences between fresh and vitrified in vitro-produced bovine embryos. Zygote. 2015;23(5):732–741.
  • Belaz KRA, Tata A, França MR, et al. Phospholipid profile and distribution in the receptive oviduct and uterus during early diestrus in cattle. Biol Reprod. 2016;95(6):127.
  • Razza EM, Satrapa RA, Emanuelli IP, et al. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos. Reprod Biol. 2016;16(1):34–40.
  • Lasic DD. The mechanism of vesicle formation. Biochem J. 1988;256(1):1–11.
  • Stetefeld J, Mckenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–427.
  • Sudano MJ, Rascado TD, Tata A, et al. Lipidome signatures in early bovine embryo development. Theriogenology. 2016;86(2):472–484.e1.
  • Ferré LB, Kjelland ME, Taiyeb AM, et al. Recent progress in bovine in vitro-derived embryo cryotolerance: impact of in vitro culture systems, advances in cryopreservation and future considerations. Reprod Domest Anim. 2020;55(6):659–676.
  • Šturm L, Poklar Ulrih N. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. IJMS. 2021;22(12):6547.
  • Botigelli RC, Razza EM, Pioltine EM, et al. Supplementing in vitro embryo production media by NPPC and sildenafil affect the cytoplasmic lipid content and gene expression of bovine cumulus-oocyte complexes and embryos. Reprod Biol. 2018;18(1):66–75.
  • Lasic DD. Liposomes: from physics to applications. 1a ed. Amsterdam: Elsevier Science Publishers., chap.3, 63–90. 1993.
  • Kreutzberger MA, Tejada E, Wang Y, et al. GUVs melt like LUVs: the large heat capacity of MLVs is not due to large size or small curvature. Biophys J. 2015;108(11):2619–2622.
  • Brooks MS, Moggridge GD. The effect of additives and the stability of multilamellar vesicles in a commercial surfactant system. Chem Eng Res Des. 2006;84(2):139–146.
  • Aguilar J, Reyley M. The uterine tubal fluid: secretion, composition and biological effects. Anim Reprod. 2005;2(2):91–105.
  • Garrett FE, Goel S, Yasul J, et al. Liposomes fuse with sperm cells and induce activation by delivery of impermeant agents. Biochim Biophys Acta. 1999;1417(1):77–88.
  • Hara T, Aramaki Y, Takada S, et al. Receptor-mediated transfer of pSV2CAT DNA to mouse liver cells using asialofetuin-labeled liposomes. Gene Ther. 1995;2(10):784–788.
  • Boelaert JR. Mucormycosis (zygomycosis): is there news for the clinician? J Infect. 1994;28:1–6.
  • Jones MN, Kaszuba M, Reboiras MD, et al. The targeting of phospholipid liposomes to bacteria. Biochim Biophys Acta. 1994;1196(1):57–64.
  • Dees C, Stringfellow D, Schultz RD. Incorporation of a follicle stimulating hormone used for embryo transfer in cattle into multilamellar liposomes. Theriogenology. 1984;21(4):661–675.
  • Banerjee R. Liposomes: applications in medicine. J Biomater Appl. 2001;16(1):3–21.
  • Cullis PR, Fenske DB. Model membrane systems as drug delivery vehicles. Biol Skr Dan Vid Selsk. 1998;49:201–208.
  • Monck JR, Fernandez JM. The fusion pore and mechanisms of biological membrane fusion. Curr Opin Cell Biol. 1996;8(4):524–533.
  • Al Darwich A, Perreau C, Petit MH, et al. Effect of PUFA on embryo cryoresistence, gene expression and AMPKα phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat. 2010;93(1–2):30–36.
  • Mondal Roy S, Sarkar M. Membrane fusion induced by small molecules and ions. J Lipids. 2011;2011:528784.
  • Ragaliauskas T, Mickevicius M, Rakovska B, et al. Fast formation of low-defect-density tethered bilayers by fusion of multilamellar vesicles. Biochim Biophys Acta Biomembr. 2017;1859(5):669–678.
  • Thompson JG. Defining the requirements for bovine embryo culture. Theriogenology. 1996;45(1):27–40.
  • Freitas DS, Lopes GADG, Nascimento BR, et al. Conjugated linoleic acid as a potential bioactive molecule to modulates gamete and embryo cryotolerance. Ciênc. anim. bras. 2020;21:1–20.
  • Vanroose G, Nauwynck H, Soom AV, et al. Structural aspects of the zona pellucida of in vitro-produced bovine embryos: a scanning electron and confocal laser scanning microscopic study. Biol Reprod. 2000;62(2):463–469.
  • Leibo SP, Pollard JW, Martino A. Chilling and freezing sensitivity of reassembled in vitro-derived bovine embryos. Theriogenology. 1995;43(1):265.
  • Abe H, Yamashita S, Satoh T, et al. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Mol. Reprod. Dev. 2002;61(1):57–66.
  • Camargo LSA, Boite MC, Wohlres-Viana S, et al. Osmotic challenge and expression of aquaporin 3 and Na/K ATPase genes in bovine embryos produced in vitro. Cryobiology. 2011;63(3):256–262.
  • Paschoal DM, Sudano MJ, Schwarz KRL, et al. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin. Theriogenology. 2017;87:108–114.
  • López-Damián EP, Fiordelisio T, Lammoglia MA, et al. Characterization of lipid droplets in Bos indicus and Bos taurus embryos. Reprod. Fertil. Dev. 2013;25(1):226.
  • López-Damián EP, Jiménez-Medina JÁ, Lammoglia MA, et al. Lipid droplets in clusters negatively affect Bos indicus embryos during cryopreservation. Anat Histol Embryol. 2018;47(5):435–443.
  • Becker WM, Kleinsmith LJ, Hardin J, et al. The world of the cell. San Francisco: Pearson Benjamin Cummings. 2009.
  • Kroon AIPM. Pieter JR, smet CHD. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res. 2013;52(4):374–394.
  • Eyster KM. The membrane and lipids as integral participants in signal transduction: lipid signal transduction for the non-lipid biochemist. Adv Physiol Educ. 2007;31(1):5–16.
  • Banliat C, Dubuisson F, Corbin E, et al. Intraoviductal concentrations of steroid hormones during in vitro culture changed phospholipid profiles and cryotolerance of bovine embryos. Mol Reprod Dev. 2019;86(6):661–672.
  • Banliat C, Bourhis DL, Bernardi O, et al. Oviduct fluid extracellular vesicles change the phospholipid composition of bovine embryos developed in vitro. IJMS. 2020;21(15):5326.
  • Razza EM, Sudano MJ, Fontes PK, et al. Treatment with cyclic adenosine monophosphate modulators prior to in vitro maturation alters the lipid composition and transcript profile of bovine cumulus-oocyte complexes and blastocysts. Reprod Fertil Dev. 2018;30(10):1314–1328.
  • Hochi S, Kimura K, Hanada A. Effect of linoleic acid-albumin in the culture medium on freezing sensitivity of in vitro-produced bovine morulae. Theriogenology. 1999;52(3):497–504.
  • Morini MA, Sierra MB, Pedroni VI, et al. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. Colloids Surf B Biointerfaces. 2015;131:54–58.
  • Leão BCS, Rocha-Frigoni NAS, Cabral EC, et al. Improved embryonic cryosurvival observed after in vitro supplementation with conjugated linoleic acid is related to changes in the membrane lipid profile. Theriogenology. 2015;84(1):127–136.
  • Armengol X, Estelrich J. Physical stability of different liposome compositions obtained by extrusion method. J. Microencapsulation. 1995;12(5):525–535.
  • De Rossi H. DISSERTATION, “Evaluation of lipid composition in the cytoplasmic membrane of bovine embryos produced in vitro and co-cultured with multilamellar vesicles” São Paulo State University (UNESP); 2019. https://repositorio.unesp.br/handle/11449/183428. (183428).