1,614
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Biogenic synthesis of CuO-NPs as nanotherapeutics approaches to overcome multidrug-resistant Staphylococcus aureus (MDRSA)

ORCID Icon, ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Pages 260-274 | Received 16 Jun 2022, Accepted 14 Sep 2022, Published online: 03 Oct 2022

References

  • Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persisted cells. Nat Rev Microbiol. 2017;15(8):453–464.
  • Akhavan O, Ghaderi E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf Coat Technol. 2010;205(1):219–223.
  • Sharaf MH, El-Sherbiny GM, Moghannem SA, et al. New combination approaches to combat methicillin-resistant Staphylococcus aureus (MRSA). Sci Rep. 2021;11(1):4240.
  • Labruere R, Sona AJ, Turos E. Anti-methicillin-resistant Staphylococcus aureus nanoantibiotics. Front Pharmacol. 2019;10:1121.
  • Merlin C. Reducing the consumption of antibiotics: would that be enough to slow down the dissemination of resistances in the downstream environment? Front Microbiol. 2020;11:33.
  • Zaman SB, Hussain MA, Nye R, et al. Review on antibiotic resistance: alarm bells are ringing. Cureus. 2017;9(6):e1403.
  • Chatterjee A, Modarai M, Naylor NR, et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis. 2018;18(12):e368–e378.
  • Kaufmann S, Dorhoi A, Hotchkiss R, et al. Host directed therapies for bacterial and viral infections. Nat Rev Drug Discov. 2018;17(1):35–56.
  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102.
  • El-Sherbiny GM, Lila MK, Shetaia YM, et al. Antimicrobial activity of biosynthesized silver nanoparticles against multidrug-resistant microbes isolated from cancer patients with bacteremia and candidemia. Indian J Med Microbiol. 2020;38(3&4):371–378.
  • Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020;10(2):292.
  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets, and applications. Nat Rev Microbiol. 2013;11(6):371–384.
  • Wang W, Li B, Yang H, et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020;13(8):2156–2164.
  • Lee NY, Ko WC, Hsueh PR. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 2019;10:1153.
  • Roy K, Sarkar CK, Ghosh CK. Antibacterial mechanism of biogenic copper nanoparticles synthesized using Heliconia psittacorum leaf extract. Nanotechnol Rev. 2016;5(6):529–536.
  • Rasool U, Hemalatha S. Marine endophytic actinomycetes assisted synthesis of copper nanoparticles (CuO-NPs): characterization and antibacterial efficacy against human pathogens. Mater Lett. 2017;194:176–180.
  • Ramteke L, Gawali P, Jadhav BL, et al. Comparative study on antibacterial activity of metal ions, monometallic and alloy noble metal nanoparticles against nosocomial pathogens. BioNanoSci. 2020;10(4):1018–1036.
  • Poggio C, Colombo M, Arciola CR, et al. Copper-alloy surfaces and cleaning regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. From fomites to anti-infective nanocoatings. Materials. 2020;13(15):3244.
  • Gawande MB, Goswami A, Felpin FOX, et al. Cu, and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev. 2016;116(6):3722–3811.
  • Nikolova MP, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27.
  • Broglie JJ, Alston B, Yang C, et al. Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One. 2015;10(10):e0141050.
  • Kornblatt AP, Nicoletti VG, Travaglia A. The neglected role of copper ions in wound healing. J Inorg Biochem. 2016;161:1–8.
  • Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(3):428–445.
  • Rubilar O, Rai M, Tortella G, et al. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures, and their applications. Biotechnol Lett. 2013;35(9):1365–1375.
  • Patel J. M100 performance standards for antimicrobial susceptibility testing 240. Wayne: Clinical and Laboratory Standards Institute; 2017.
  • Abushiba M, El-Sherbiny G, Moghannem S, et al. Enhancement of antibiotics activity by microbially synthesized silver nanoparticles. Afr J Biol Sci. 2019;15(1):137–153.
  • El-Naggar NEA, Mohamedin A, Hamza SS, et al. Extracellular biofabrication, characterization, and antimicrobial efficacy of silver nanoparticles loaded on cotton fabrics using newly isolated streptomyces sp. SSHH-1E. J Nanomater. 2016;2016:1–17.
  • Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, et al. Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res. 2016;42(3):301–312.
  • Singh M, Kumar M, Kalaivani P, et al. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013a;36(4):407–415.
  • Radha KV, Gayathri K. Synthesis, characterization, and application of copper nano particles. Rev Int J Eng Res Technol. 2019;08(03):412–421.
  • Birla SS, Tiwari VV, Gade AK, et al. Fabrication of silver nanoparticles by phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Lett Appl Microbiol. 2009;48(2):173–179.
  • Bagherzade G, Tavakoli MM, Namaei MH. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed. 2017;7(3):227–233.
  • Sopirala MM, Mangino JE, Gebreyes WA, et al. Synergy testing by etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(11):4678–4683.
  • Isaei E, Mansouri S, Mohammadi F, et al. Novel combinations of synthesized ZnO NPs and cefazidime: evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna J Med Biotechnol. 2016;8(4):169.
  • Joung D-K, Choi S-H, Kang O-H, et al. Synergistic effects of oxyresveratrol in conjunction with antibiotics against methicillin-resistant Staphylococcus aureus. Mol Med Rep. 2015;12(1):663–667.
  • Barry AL. Methods for determining bactericidal activity of antimicrobial agents: Approved guideline. Wayne: National Committee for Clinical Laboratory Standards; 1999.
  • Konaté K, Hilou A, Mavoungou JF, et al. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (malvaceae) against cotrimoxazole-resistant bacteria strains. Ann Clin Microbiol Antimicrob. 2012;11(1):5.
  • Lorian V. Antibiotics in laboratory medicine. Philadelphia: Lippincott Williams and Wilkins; 2005.
  • Abu-Serie MM, El-Fakharany EM. Efficiency of novel nanocombinations of bovine milk proteins (lactoperoxidase and lactoferrin) for combating different human cancer cell lines. Sci Rep. 2017;7(1):16769.
  • Payne JN, Waghwani HK, Connor MG, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7:607.
  • Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. 2nd ed. Boston: Jones & Bartlett Learning; 1999.
  • Hiramatsu K, Katayama Y, Matsuo M, et al. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J Infect Chemother. 2014;20(10):593–601.
  • Sarah B, Moaz IMH, Mohamed HA, et al. Biosynthesis of copper oxide nanoparticles using streptomyces MHM38 and its biological applications. J Nanomater. 2021;2021:1–16.
  • Brause R, Möltgen H, Kleinermanns K. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl Phys B. 2002;75(6-7):711–716.
  • Krishnaraj C, Jagan E, Rajasekar S, et al. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against waterborne pathogens. Colloids Surf B Biointerfaces. 2010;76(1):50–56.
  • Ponnusamy P, Kolandasamy M, Viswanathan E, et al. Antifungal activity of biosynthesized copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci. 2016;11(13):1019–1031.
  • Dougherty GM, Rose KA, Tok JBH, et al. The zeta potential of surface‐functionalized metallic nanorod particles in aqueous solution. Electrophoresis. 2008;29(5):1131–1139.
  • Cuevas A, Viera I, Torre MH, et al. Infrared spectra of the copper(II) complexes of amino acids with hydrophobic residues. Acta Farm Bonaerense. 1998;17(3):213–218.
  • Tomaszewska E, Soliwoda K, Kadziola K, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater. 2013;2013:1–10.
  • Kruk T, Szczepanowicz K, Stefańska JP, et al. Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B Biointerfaces. 2015;128(1):17–22.
  • Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. 2014;25(13):135101.
  • Zakharova OV, Godymchuk AY, Gusev AA, et al. Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. Biomed Res Int. 2015;2015:412530.
  • Rajendran A, Siva E, Dhanraj C, et al. A green and facile approach for the synthesis copper oxide nanoparticles using Hibiscus rosa-sinensis flower extracts and it’s antibacterial activities. J Bioprocess Biotech. 2018;8(3):324.
  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, et al. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology. 2012;23(8):085103.
  • Yoon KY, Byeon JH, Park JH, et al. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2–3):572–575.
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707–716.
  • Gutiérrez MF, Malaquias P, Hass V, et al. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces. J Dent. 2017;61:12–20.
  • Shobha G, Moses V, Ananda S. Biological synthesis of copper nanoparticles and its impact. Int J Pharm Sci Invent. 2014;3(8):6–28.
  • Ermini ML, Volian V. Antimicrobial nano-agents: the copper age. ACS Nano. 2021;15(4):6008–6029.
  • Zhang Y, Wang L, Xu X, et al. Combined systems of different antibiotics with nano-CuO against Escherichia coli and the mechanisms involved. Nanomedicine (Lond). 2018;13(3):339–351.
  • Sultana N, Arayne MS, Sabri R. Erythromycin synergism with essential and trace elements. Pak J Pharm Sci. 2005;18(2):35–39. 65
  • Woźniak-Budych MJ, Przysiecka L, Langer K, et al. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity. J Mater Sci Mater Med. 2017;28(3):42.
  • Kiranmai M, Kadimcharla K, Keesara NR, et al. Green synthesis of stable copper nanoparticles and synergistic activity with antibiotics. pharmaceutical-sciences. 2017;79(5):695–700.
  • Kaur P, Ajinkya GN, Diksha S, et al. Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. Biomater Technol. 2019;1/:133–147.
  • Anacona JR, Rodriguez A. Synthesis and antibacterial activity of ceftriaxone metal complexes. Transition Met Chem. 2005;30(7):897–901.
  • Benjamin DB, Amanda EB. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev. 2014;30(78):14–27.
  • R KC, C A, Oli A, et al. Potential bactericidal effect of silver nanoparticles synthesized from enterococcus species. Orient J Chem. 2014;30(3):1253–1262.
  • Das PE, Abu-Yousef IA, Majdalawieh AF, et al. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 2020;25(3):555.
  • Rajivgandhi G, Maruthupandy M, Muneeswaran T, et al. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin-resistant ESBL producing bacteria. Microb Pathog. 2019;127:267–276.
  • Prabhu YT, Rao KV, Sai VS, et al. A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc. 2017;21(2):180–185.
  • Maruthupandy M, Rajivgandhi G, Muneeswaran T, et al. Biologically synthesized zinc oxide nanoparticles as nanoantibiotics against ESBLs producing gram-negative bacteria. Microb Pathog. 2018;121:224–231.
  • Ramachandran G, Rajivgandhi G, Maruthupandy M, et al. Isolation and identification of antibacterial compound from marine endophytic actinomycetes against multi drug-resistant bacteria. Ann Microbiol Immunol. 2018;1(1):1003.
  • Bagchi B, Dey S, Bhandary S, et al. Antimicrobial efficacy and biocompatibility study of copper nanoparticle adsorbed mullite aggregates. Mater Sci Eng C Mater Biol Appl. 2012;32(7):1897–1905.
  • Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–39.
  • Kant S, Asthana S, Missiakas D, et al. A novel STK1-targeted small-molecule as an “antibiotic resistance breaker” against multidrug-resistant Staphylococcus aureus. Sci Rep. 2017;7(1):1–19.
  • Torimiro N, Moshood AA, Eyiolawi SA. Analysis of beta-lactamase production and antibiotics resistance in Staphylococcus aureus strains. J Infect Dis Immun. 2013;5(3):24–28.
  • Fantin B, Carbon C. In vivo antibiotic synergism: contribution of animal models. Antimicrob Agents Chemother. 1992;36(5):907–912.
  • Arul Selvaraj RC, Rajendran M, Nagaiah HP. Re-potentiation of β-lactam antibiotic by synergistic combination with biogenic copper oxide nanocubes against biofilm forming multidrug-resistant bacteria. Molecules. 2019;24(17):3055.
  • Shanmuganathan R, MubarakAli D, Prabakar D, et al. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res Int. 2018;25(11):10362–10370.
  • Hall MJ, Westmacott D, Wong-Kai IP. Comparative in-vitro activity and mode of action of ceftriaxone (Ro 13-9904), a new highly potent cephalosporin. J Antimicrob Chemother. 1981;8(3):193–203.
  • De Jong WH, De Rijk E, Bonetto A, et al. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology. 2019;13(1):50–72.
  • Bondarenko O, Ivask A, Käkinen A, et al. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut. 2012;169:81–89.