1,774
Views
11
CrossRef citations to date
0
Altmetric
Research Article

In vitro antiplasmodial activity, hemocompatibility and temporal stability of Azadirachta indica silver nanoparticles

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 286-300 | Received 07 Jun 2022, Accepted 14 Sep 2022, Published online: 10 Oct 2022

References

  • World Malaria Report. 2021. https://www.who.int/publications-detail-redirect/9789240040496
  • Abuaku B, Duah-Quashie NO, Quashie N, et al. Trends and predictive factors for treatment failure following artemisinin-based combination therapy among children with uncomplicated malaria in Ghana: 2005-2018. BMC Infect Dis. 2021;21(1):1255.
  • Nhama A, Nhamússua L, Macete E, et al. In vivo efficacy and safety of artemether-lumefantrine and amodiaquine-artesunate for uncomplicated Plasmodium falciparum malaria in Mozambique, 2018. Malar J. 2021;20(1):390.
  • Takashima E, Tachibana M, Morita M, et al. Identification of novel malaria transmission-blocking vaccine candidates. Front Cell Infect Microbiol. 2021;11:805482.
  • Gansané A, Candrinho B, Mbituyumuremyi A, et al. Design and methods for a quasi-experimental pilot study to evaluate the impact of dual active ingredient insecticide-treated nets on malaria burden in five regions in Sub-Saharan Africa. Malar J. 2022;21(1):19.
  • Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers (Basel). 2020;12(4):855.
  • Borgheti-Cardoso LN, Anselmo MS, Lantero E, et al. Promising nanomaterials in the fight against malaria. J Mater Chem B. 2020;8(41):9428–9448.
  • Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep. 2021;11(1):22060.
  • Ghazali SZ, Mohamed Noor NR, Mustaffa KMF. Anti-plasmodial activity of aqueous neem leaf extract mediated green synthesis-based silver nitrate nanoparticles. Prep Biochem Biotechnol. 2022;52(1):99–107.
  • Poopathi S, De Britto LJ, Praba VL, et al. Synthesis of silver nanoparticles from azadirachta indica—a most effective method for mosquito control. Environ Sci Pollut Res Int. 2015;22(4):2956–2963.
  • Mousavi SM, Hashemi SA, Ghasemi Y, et al. Green synthesis of silver nanoparticles toward bio and medical applications: review study, Artificial Cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S855–S872.
  • Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103(7):1931–1944.
  • Yaqoob AA, Ahmad H, Parveen T, et al. Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem. 2020;8:341.
  • Oves M, Ahmar Rauf M, Aslam M, et al. Green synthesis of silver nanoparticles by conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci. 2022;29(1):460–471.
  • Gupta SC, Prasad S, Tyagi AK, et al. Neem (azadirachta indica): an indian traditional panacea with modern molecular basis. Phytomedicine. 2017;34:14–20.
  • Gathirwa JW, Rukunga GM, Mwitari PG, et al. Traditional herbal antimalarial therapy in kilifi district, Kenya. J Ethnopharmacol. 2011;134(2):434–442.
  • Mishra A, Kaushik NK, Sardar M, et al. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf B Biointerfaces. 2013;111:713–718.
  • Murugan K, Panneerselvam C, Samidoss CM, et al. In vivo and in vitro effectiveness of azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci. 2016;106:14–22.
  • Sardana M, Agarwal V, Pant A, et al. Antiplasmodial activity of silver nanoparticles: a novel green synthesis approach. Asian Pac J Trop Biomed. 2018;8(5):268.
  • Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep. 2016;6:29265.
  • Pérez de la Vega M. Plant genetic adaptedness to climatic and edaphic environment. Euphytica. 1996;92(1-2):27–38.
  • He S, Yao J, Xie S, et al. Superlattices of silver nanoparticles passivated by mercaptan. J. Phys. D: Appl. Phys. 2001;34(24):3425–3429.
  • Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–675.
  • Smilkstein M, Sriwilaijaroen N, Kelly JX, et al. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother. 2004;48(5):1803–1806.
  • Miki M, Tamai H, Mino M, et al. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by alpha-tocopherol. Arch Biochem Biophys. 1987;258(2):373–380.
  • Kaushik NK, Bagavan A, Rahuman AA, et al. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar J. 2015;14:65.
  • Wiley BJ, Im SH, Li Z-Y, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B. 2006;110(32):15666–15675.
  • Ahmed S, Ahmad M, Swami BL, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9(1):1–7.
  • Dutta PP, Bordoloi M, Gogoi K, et al. Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomed Pharmacother. 2017;91:567–580.
  • Busari ZA, Dauda KA, Morenikeji OA, et al. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Front Pharmacol. 2017;8:622.
  • Smitha SL, Nissamudeen KM, Philip D, et al. Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2008;71(1):186–190.
  • Khalil MMH, Ismail EH, El-Baghdady KZ, et al. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian J Chem. 2014;7(6):1131–1139.
  • Eya’ane Meva F, Segnou ML, Ebongue CO, et al. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Rev Bras Farmacogn. 2016;26(5):640–646.
  • Asimuddin M, Shaik MR, Adil SF, et al. Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. J King Saud Univ Sci. 2020;32(1):648–656.
  • Al Aboody MS. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis, artificial cells. Artif Cells Nanomed Biotechnol. 2019;47(1):2107–2113.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.
  • Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann Phys. 1908;330(3):377–445.
  • Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343–1348.
  • Talabani RF, Hamad SM, Barzinjy AA, et al. Biosynthesis of silver nanoparticles and their applications in harvesting sunlight for solar thermal generation. Nanomaterials (Basel). 2021;11(9):2421.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2019;12(7):908–931.
  • Macovei I, Luca SV, Skalicka-Woźniak K, et al. Phyto-functionalized silver nanoparticles derived from conifer bark extracts and evaluation of their antimicrobial and cytogenotoxic effects. Molecules. 2021;27(1):217.
  • Pabisch S, Feichtenschlager B, Kickelbick G, et al. Effect of interparticle interactions on size determination of zirconia and silica based systems – a comparison of SAXS, DLS, BET, XRD and Chem Phys Lett. 2012;521(C):91–97.
  • Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–582.
  • Bekono BD, Ntie-Kang F, Onguéné PA, et al. The potential of anti-malarial compounds derived from African medicinal plants: a review of pharmacological evaluations from 2013 to 2019. Malar J. 2020;19(1):183.
  • Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10:911.
  • Phillipson JD, Wright CW. Antiprotozoal agents from plant sources. Planta Med. 1991;57(7 Suppl):S53–S59.
  • Benedec D, Oniga I, Cuibus F, et al. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:1041–1058.
  • Zuorro A, Iannone A, Natali S, et al. Green synthesis of silver nanoparticles using bilberry and red currant waste extracts. Processes. 2019;7(4):193.
  • Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–356.
  • Liao LL, Kupchan SM, Horwitz SB. Mode of action of the antitumor compound bruceantin, an inhibitor of protein synthesis. Mol Pharmacol. 1976;12(1):167–176.
  • Guimarães AC, Meireles LM, Lemos MF, et al. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24(13):2471.
  • Pandey RP, Mukherjee R, Priyadarshini A, et al. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed Pharmacother. 2021;141:111943.
  • Chen LQ, Fang L, Ling J, et al. Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. 2015;28(3):501–509.
  • de la Harpe KM, Kondiah PPD, Choonara YE, et al. The hemocompatibility of nanoparticles: a review of cell–nanoparticle interactions and hemostasis. Cells. 2019;8(10):1209.
  • Han Y, Wang X, Dai H, et al. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl Mater Interfaces. 2012;4(9):4616–4622.
  • Das D, Nath BC, Phukon P, et al. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerfaces. 2013;111:556–560.
  • Najoom S, Fozia F, Ahmad I, et al. Effective antiplasmodial and cytotoxic activities of synthesized zinc oxide nanoparticles using rhazya stricta leaf extract. Evid Based Complement Alternat Med. 2021;2021:5586740.
  • ASTM E2524 - 08(2013) | Standard Test Method for Analysis of Hemolytic Properties of Nanoparticles | ASTM | STATNANO, (n.d.). Available from: https://statnano.com/standard/astm/50/ASTM-E2524-08. (2013) (accessed 15 January 2022).
  • Yildiztekin M, Nadeem S, Yildiztekin F, et al. Green synthesis and characterization of silver nanoparticles from crocus mathewii; a disremembered turkish flowering plant. Indian J Pharm Sci. 2017;79(4):536–543.
  • Tejamaya M, Römer I, Merrifield RC, et al. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol. 2012;46(13):7011–7017.
  • Thakur L, Ghodasra U, Patel N, et al. Novel approaches for stability improvement in natural medicines. Pharmacogn Rev. 2011;5(9):48–54.
  • Ali A, Chong CH, Mah SH, et al. Impact of storage conditions on the stability of predominant phenolic constituents and antioxidant activity of dried piper betle extracts. Molecules. 2018;23(2):484.