1,241
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparative efficacy of cephradine-loaded silver and gold nanoparticles against resistant human pathogens

ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 312-321 | Received 06 Dec 2021, Accepted 30 Oct 2022, Published online: 15 Nov 2022

References

  • Leroux J-C, Allémann E, De Jaeghere F, et al. Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery. J Controlled Release. 1996;39(2-3):339–350.
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–347.
  • Wagner V, Dullaart A, Bock A-K, et al. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–1217.
  • Sahoo S, Parveen S, Panda J. The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med. 2007;3(1):20–31.
  • Han MY, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett. 2007;98(20):206805.
  • Zhou Y, Yu S, Cui X, et al. Formation of silver nanowires by a novel solid − liquid phase arc discharge method. Chem Mater. 1999;11(3):545–546.
  • Husseiny M, El-Aziz MA, Badr Y, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc. 2007;67(3-4):1003–1006.
  • Sastry M, Ahmad A, Khan MI, et al. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science. 2003;85(2):162–170.
  • Sharma NC, Sahi SV, Nath S, et al. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol. 2007;41(14):5137–5142.
  • Kemp MM, Kumar A, Mousa S, et al. Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules. 2009;10(3):589–595.
  • Moldovan B, David L, Achim M, et al. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J Mol Liq. 2016;221:271–278.
  • Lara HH, Ayala-Núñez NV, Turrent L, et al. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol. 2010;26(4):615–621.
  • Stoimenov PK, Klinger RL, Marchin GL, et al. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18(17):6679–6686.
  • Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine (Lond). 2009;4(1):105–118.
  • Koren E, Torchilin VP. Cell-penetrating peptides: breaking through to the other side. Trends Mol Med. 2012;18(7):385–393.
  • Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–1555.
  • Chen Y, Dalwadi G, Benson H. Drug delivery across the blood-brain barrier. Curr Drug Deliv. 2004;1(4):361–376.
  • Silva HF, Lima KM, Cardoso MB, et al. Doxycycline conjugated with polyvinylpyrrolidone-encapsulated silver nanoparticles: a polymer’s malevolent touch against Escherichia coli. RSC Adv. 2015;5(82):66886–66893.
  • Kwon S, Ko H, You DG, et al. Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Res. 2019;52(7):1771–1782.
  • Jain KK. Nanopharmaceuticals. In: The handbook of nanomedicine. Humana New York, NY: Springer; 2017. p. 201–271.
  • Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014.
  • Fernandes R, Amador P, Prudêncio C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Reviews in Medical Microbiology. 2013;24(1):7–17.
  • Masri A, Anwar A, Ahmed D, et al. Silver nanoparticle Conjugation-Enhanced antibacterial efficacy of clinically approved drugs cephradine and vildagliptin. Antibiotics. 2018;7(4):100.
  • Ahmed D, Shah MR, Perveen S, et al. Cephradine coated silver nanoparticle their drug release mechanism, and antimicrobial potential against Gram-Positive and Gram-Negative bacterial strains through AFM. J Chem Soc Pak. 2018;40(2): 388–398.
  • Khan AK, Ahmed A, Hussain M, et al. Antibiofilm potential of 16-oxo-cleroda-3, 13 (14) E-diene-15 oic acid and its five new γ-amino γ-lactone derivatives against methicillin resistant Staphylococcus aureus and Streptococcus mutans. Eur J Med Chem. 2017;138:480–490.
  • Ahmed A, Khan AK, Anwar A, et al. Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb Pathog. 2016;98:50–56.
  • Khalil MM, Ismail EH, El-Baghdady KZ, et al. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian J Chem. 2014;7(6):1131–1139.
  • Bromme R, Jucks R, Wagner T. How to Refer to ‘Diabetes’? Language in Online Health Advice. www.interscience.wiley.com
  • Ghule K, Ghule AV, Liu J-Y, et al. Microscale size triangular gold prisms synthesized using bengal gram beans (cicer arietinum L.) extract and HAuCl4· 3H2O: a green biogenic approach. J Nanosci Nanotechnol. 2006;6(12):3746–3751.
  • Lam SY, Shankar V, Erramilli MK, et al. Customer value, satisfaction, loyalty, and switching costs: an illustration from a business-to-business service context. j Acad Market Sci. 2004;32(3):293–311.
  • Kim SC, Park KT, Hwang JW, et al. Comparative analysis of clinical outcomes for laparoscopic distal pancreatic resection and open distal pancreatic resection at a single institution. Surg Endosc. 2008;22(10):2261–2268.
  • Jiang J, Oberdörster G, Biswas P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res. 2009;11(1):77–89.
  • Dong X, Ji X, Wu H, et al. Shape control of silver nanoparticles by stepwise citrate reduction. J Phys Chem C. 2009;113(16):6573–6576.
  • Ojea-Jiménez I, Puntes V. Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc. 2009;131(37):13320–13327.
  • Ahmad T, Mahbood F, Sarwar R, et al. Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study via TEM analysis. Artif Cells Nanomed Biotechnol. 2021;49(1):661–671.
  • Roy K, Sarkar C, Ghosh C. Plant-mediated synthesis of silver nanoparticles using parsley (petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl Nanosci. 2015;5(8):945–951.
  • Abdel-Fattah WI, Ali GW. On the anti-cancer activities of silver nanoparticles. J Appl Biotechnol Bioeng. 2018;5(2):1–4.
  • Khorrami S, Zarrabi A, Khaleghi M, et al. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:8013–8024.
  • Zheng K, Setyawati MI, Lim T-P, et al. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10(8):7934–7942.
  • Mocan L, Tabaran FA, Mocan T, et al. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles. Int J Nanomedicine. 2017;12:2255–2263.
  • Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, et al. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11(7):1265–1276.
  • Zhou Y, Kong Y, Kundu S, et al. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnology. 2012;10(1):19–19.
  • MubarakAli D, Thajuddin N, Jeganathan K, et al. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces. 2011;85(2):360–365.