2,096
Views
0
CrossRef citations to date
0
Altmetric
Other

Encapsulation of propolis extracts in aqueous formulations by using nanovesicles of lipid and poly(styrene-alt-maleic acid)

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 192-204 | Received 25 Feb 2022, Accepted 27 Mar 2023, Published online: 13 Apr 2023

References

  • Wagh VD. Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Pharm Sci. 2013;2013:1–11.
  • Daleprane JB, Abdalla DS. Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. Evid Based Complement Alternat Med. 2013;2013:175135.
  • Grange JM, Davey RW. Antibacterial properties of propolis (bee glue). J R Soc Med. 1990;83(3):159–160.
  • Kocot J, Kiełczykowska M, Luchowska-Kocot D, et al. Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. Oxid Med Cell Logev. 2018;2018:1–29.
  • Szliszka E, Kucharska AZ, Sokół-Łętowska A, et al. Chemical composition and anti-Inflammatory effect of ethanolic extract of Brazilian green propolis on activated J774A.1 macrophages. Evid Based Complement Alternat Med. 2013;2013:976415.
  • Mohdaly A, Mahmoud AA, Roby MHH, et al. Phenolic extract from propolis and bee pollen: composition, antioxidant and antibacterial activities. J Food Biochem. 2015;39(5):538–547.
  • Walker P, Crane E. Constituents of propolis. Apidologie. 1987;18(4):327–334.
  • Eichsteininger J, Kirisits K, Smöch C, et al. Structural insight into the in vitro anti-intravasative properties of flavonoids. Sci Pharm. 2019;87(3):23.
  • Kubiliene L, Jekabsone A, Zilius M, et al. Comparison of aqueous, polyethyleneglycol-aqueous and ethanolic propolis extracts: antioxidant and mitochondria modulating properties. BMC Complement Altern Med. 2018;18(1):1–10.
  • Agnihotri N, Mishra R, Goda C, et al. Microencapsulation – a novel approach in drug delivery: a review. Indo Global J Pharm Sci. 2012;02(01):01–20.
  • Rosseto HC, Toledo L, Francisco L, et al. Nanostructured lipid systems modified with waste material of propolis for wound healing: design, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2017;158:441–452.
  • Saez-Martinez V, Punyamoonwongsa P, Tighe BJ. Polymer-lipid interactions: biomimetic self-assembly behaviour and surface properties of poly(styrene-alt-maleic acid) with diacylphosphatidylcholines. React Funct Polym. 2015;94:9–16.
  • Baghayeri M, Zare EN, Namadchian M. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly (styrene-alternative-maleic acid)/functionalized multi-wall carbon nanotubes blends. Sens Actuat B. 2013;188:227–234.
  • Khaojanta T, Kalaithong W, Somsunan R, et al. Synthesis and characterization of block copolymers of styrene‐maleic acid with acrylamide and N, N‐dimethylacrylamide. Polym Eng Sci. 2022;62(6):2031–2046.
  • Zareh EN, Moghadam PN. Synthesis and characterization of conductive nanoblends based on poly (aniline‐co‐3‐aminobenzoic acid) in the presence of poly (styrene‐alt‐maleic acid). J Appl Polym Sci. 2011;122(1):97–104.
  • Punyamoonwongsa P, Kakumyan P, Saichana N, et al. Structural modification of styrene maleic anhydride copolymers for plant bioactive compound extraction. Key Eng Mater. 2019;798:351–357.
  • Scheidelaar S, Koorengevel MC, Van Walree CA, et al. Effect of polymer composition and pH on membrane solubilization by styrene-maleic acid copolymers. Biophys J. 2016;111(9):1974–1986.
  • Tonge S, Tighe BJ. Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev. 2001;53(1):109–122.
  • Ravula T, Ramadugu S, Mauro GD, et al. Bioinspired, size-tunable self-assembly of polymer-lipid bilayer nanodiscs. Angew Chem Int Ed Engl. 2017;56(38):11466–11470.
  • Pierre MBR, Marchetti JM, Tedesco AC, et al. Potencial incorporation of 5-aminolevulinic acid in micelles and stratum corneum lipids liposomes: fluorescence quenching studies. Braz J Pharm Sci. 2001;37:355–361.
  • Schmid M-H, Korting H. Therapeutic progress with topical liposome drugs for skin disease. Adv Drug Delivery Rev. 1996;18(3):335–342.
  • Punyamoonwongsa P. Lipid nanodiscs of poly(styrene-alt-maleic acid) to enhance plant antioxidant extraction. e-Polymers. 2022;22(1):607–614.
  • Pierre MBR, Dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res. 2011;303(9):607–621.
  • Punyamoonwongsa P. Synthetic analogues of protein-lipid complexes [PhD]. Aston University, Birmingham, United Kingdom; 2007.
  • Punyamoonwongsa P, Tangsongcharoen W, Phoungtawee P, et al. pH-Responsive styrene maleic anhydride with improved surface activity. KMUTNB: IJAST. 2018; 11(1), 45–51.
  • Magalhães LM, Almeida M, Barreiros L, et al. Automatic aluminum chloride method for routine estimation of total flavonoids in red wines and teas. Food Anal Methods. 2012;5(3):530–539.
  • Pujirahayu N, Ritonga H, Uslinawaty Z. Properties and flavonoids content in propolis of some extraction method of raw propolis. Int J Pharm Pharm Sci. 2014;6:338–340.
  • Yehye WA, Rahman NA, Ariffin A, et al. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur J Med Chem. 2015;101:295–312.
  • Mokhtar SU. Comparison of total phenolic and flavonoids contents in Malaysian propolis extract with two different extraction solvents. Int J Eng Technol Sci. 2019;6(2):1–11.
  • Cunha IBS, Sawaya A, Caetano FM, et al. Factors that influence the yield and composition of Brazilian propolis extracts. J Braz Chem Soc. 2004;15(6):964–970.
  • Zin NBM, Azemin A, Rodi MMM, et al. Chemical composition and antioxidant activity of stingless bee propolis from different extraction methods. Int J Eng Technol. 2018;7:90–95.
  • Lavinas FC, Macedo E, Sá GBL, et al. Brazilian stingless bee propolis and geopropolis: promising sources of biologically active compounds. Braz J Pharmacogn. 2019;29(3):389–399.
  • Murnen HK, Khokhlov AR, Khalatur PG, et al. Impact of hydrophobic sequence patterning on the coil-to-globule transition of protein-like polymers. Macromolecules. 2012;45(12):5229–5236.
  • Zhang R, Sahu ID, Bali AP, et al. Characterization of the structure of lipodisq nanoparticles in the presence of KCNE1 by dynamic light scattering and transmission electron microscopy. Chem Phys Lipids. 2017;203:19–23.
  • Knowles TJ, Finka R, Smith C, et al. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc. 2009;131(22):7484–7485.
  • Tanaka M, Hosotani A, Tachibana Y, et al. Preparation and characterization of reconstituted lipid–synthetic polymer discoidal particles. Langmuir. 2015;31(46):12719–12726.
  • Bjørnestad VA, Orwick-Rydmark M, Lund R. Understanding the structural pathways for lipid nanodisc formation: how styrene maleic acid copolymers induce membrane fracture and disc formation. Langmuir. 2021;37(20):6178–6188.
  • Hall SC, Tognoloni C, Price GJ, et al. Influence of poly (styrene-co-maleic acid) copolymer structure on the properties and self-assembly of SMALP nanodiscs. Biomacromolecules. 2018;19(3):761–772.
  • Chen W, Duša F, Witos J, et al. Determination of the main phase transition temperature of phospholipids by nanoplasmonic sensing. Sci Rep. 2018;8(1):1–11.
  • Pardo JD, Dörr J, Renne M, et al. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers. Chem Phys Lipids. 2017;208:58–64.
  • Stepien P, Augustyn B, Poojari C, et al. Complexity of seemingly simple lipid nanodiscs. Biochim Biophys Acta Biomembr. 2020;1862(11):183420.
  • Stepien P, Polit A, Wisniewska-Becker A. Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes. Biochim Biophys Acta. 2015;1848(1 Pt A):60–66.
  • Ahangari Z, Naseri M, Vatandoost F. Propolis: chemical composition and its applications in endodontics. Iran Endod J. 2018;13(3):285–292.
  • Anjum SI, Ullah A, Khan KA, et al. Composition and functional properties of propolis (bee glue): a review. Saudi J Biol Sci. 2019;26(7):1695–1703.
  • Rajablou K, Attar H, Sadjady SK, et al. DSPC based polymeric micelles loaded with amphotericin B: synthesis, characterization, and in vitro study. Nanomed Res J. 2023;8(1):37–49.
  • To CZ, Bhunia AK. Three dimensional vero cell-platform for rapid and sensitive screening of Shiga-toxin producing Escherichia coli. Front Microbiol. 2019;10:949.
  • Pagano RE, Weinstein JN. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468.
  • Augustine R, Hasan A, Primavera R, et al. Cellular uptake and retention of nanoparticles: insights on particle properties and interaction with cellular components. Mater Today Commun. 2020;25:101692.
  • Matson ML. Ultra-short, single-walled carbon nanotube capsules for diagnostic imaging and radiotherapy. Rice University; 2012.
  • Yue J, Feliciano TJ, Li W, et al. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug Chem. 2017;28(6):1791–1800.
  • Jayachandran P, Ilango S, Suseela V, et al. Green synthesized silver nanoparticle-loaded liposome-based nanoarchitectonics for cancer management: in vitro drug release analysis. Biomedicines. 2023;11(1):217.