973
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 371-383 | Received 27 Mar 2023, Accepted 12 Jul 2023, Published online: 07 Aug 2023

References

  • Ostermann M, Sauter A, Xue Y, et al. Label-free impedance flow cytometry for nanotoxicity screening. Sci Rep. 2020;10(1):142. doi: 10.1038/s41598-019-56705-3.
  • Yang J, Huang Y, Wang X, et al. Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys J. 1999;76(6):3307–3314. doi: 10.1016/S0006-3495(99)77483-7.
  • Han S-I, Joo Y-D, Han K-H. An electrorotation technique for measuring the dielectric properties of cells with simultaneous use of negative quadrupolar dielectrophoresis and electrorotation. Analyst. 2013;138(5):1529–1537. doi: 10.1039/c3an36261b.
  • Hölzel R. Non-invasive determination of bacterial single cell properties by electrorotation. Biochim Biophys Acta. 1999;1450(1):53–60. doi: 10.1016/s0167-4889(99)00036-1.
  • Vahey MD, Voldman J. An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem. 2008;80(9):3135–3143. doi: 10.1021/ac7020568.
  • Xie X, Zhang Z, Ge X, et al. Particle self-aligning, focusing, and electric impedance microcytometer device for label-free single cell morphology discrimination and yeast budding analysis. Anal Chem. 2019;91(21):13398–13406. doi: 10.1021/acs.analchem.9b01509.
  • Liu J, Qiang Y, Alvarez O, et al. Electrical impedance microflow cytometry with oxygen control for detection of sickle cells. Sens Actuators B Chem. 2018;255(Pt 2):2392–2398. doi: 10.1016/j.snb.2017.08.163.
  • Sun T, Morgan H. Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid. 2010;8(4):423–443. doi: 10.1007/s10404-010-0580-9.
  • Mansor MA, Ahmad MR. Single cell electrical characterization techniques. Int J Mol Sci. 2015;16(6):12686–12712. doi: 10.3390/ijms160612686.
  • Honrado C, Bisegna P, Swami NS, et al. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. Lab Chip. 2021;21(1):22–54. doi: 10.1039/d0lc00840k.
  • Cheung KC, Di Berardino M, Schade-Kampmann G, et al. Microfluidic impedance-based flow cytometry. Cytometry A. 2010;77(7):648–666.
  • Gucker FT, O’Konski CT, Pickard HB, et al. A photoelectronic counter for colloidal particles. J Am Chem Soc. 1947;69(10):2422–2431. doi: 10.1021/ja01202a053.
  • Song H, Wang Y, Rosano JM, et al. A microfluidic impedance flow cytometer for identification of differentiation state of stem cells. Lab Chip. 2013;13(12):2300–2310. doi: 10.1039/c3lc41321g.
  • Gawad S, Schild L, Renaud PH. Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip. 2001;1(1):76–82. doi: 10.1039/b103933b.
  • Esfandyarpour R, Javanmard M, Koochak Z, et al. Nanoelectronic impedance detection of target cells. Biotechnol Bioeng. 2014;111(6):1161–1169.
  • Zhao Y, Liu Q, Sun H, et al. Electrical property characterization of neural stem cells in differentiation. PLOS One. 2016;11(6):e0158044. doi: 10.1371/journal.pone.0158044.
  • Han Z, Chen L, Zhang S, et al. Label-free and simultaneous mechanical and electrical characterization of single plant cells using microfluidic impedance flow cytometry. Anal Chem. 2020;92(21):14568–14575. doi: 10.1021/acs.analchem.0c02854.
  • Wang K, Zhao Y, Chen D, et al. Specific membrane capacitance, cytoplasm conductivity and instantaneous young’s modulus of single tumour cells. Sci Data. 2017;4:170015. doi: 10.1038/sdata.2017.15.
  • Zhao Y, Chen D, Luo Y, et al. Simultaneous characterization of instantaneous Young’s modulus and specific membrane capacitance of single cells using a microfluidic system. Sensors. 2015;15(2):2763–2773. doi: 10.3390/s150202763.
  • Cheung K, Gawad S, Renaud P. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A. 2005;65(2):124–132. doi: 10.1002/cyto.a.20141.
  • Holmes D, Pettigrew D, Reccius CH, et al. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip. 2009;9(20):2881–2889. doi: 10.1039/b910053a.
  • Spencer D, Morgan H. High-speed single-cell dielectric spectroscopy. ACS Sens. 2020;5(2):423–430. doi: 10.1021/acssensors.9b02119.
  • McGrath JS, Honrado C, Moore JH, et al. Electrophysiology-based stratification of pancreatic tumorigenicity by label-free single-cell impedance cytometry. Anal Chim Acta. 2020;1101:90–98. doi: 10.1016/j.aca.2019.12.033.
  • Emaminejad S, Javanmard M, Dutton RW, et al. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry. Lab Chip. 2012;12(21):4499–4507. doi: 10.1039/c2lc40759k.
  • Wang J, Chatrathi MP, Mulchandani A, et al. Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal Chem. 2001;73(8):1804–1808. doi: 10.1021/ac001424e.
  • Park K, Suk H-J, Akin D, et al. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip. 2009;9(15):2224–2229. doi: 10.1039/b904328d.
  • Fu Y, Yuan Q, Guo J. Lab-on-PCB-based micro-cytometer for circulating tumor cells detection and enumeration. Microfluid Nanofluid. 2017;21(2):1–4. doi: 10.1007/s10404-017-1854-2.
  • Mansor MA, Takeuchi M, Nakajima M, et al. Electrical impedance spectroscopy for detection of cells in suspensions using microfluidic device with integrated. Appl Sci. 2017;7(2):170. doi: 10.3390/app7020170.
  • Mansor MA, Takeuchi M, Nakajima M, et al. A novel integrated dual microneedle-microfluidic impedance flow cytometry for cells detection in suspensions. Int J Electr Comput Eng. 2017;7(3):1513. doi: 10.11591/ijece.v7i3.pp1513-1521.
  • Morgan H, Sun T, Holmes D, et al. Single cell dielectric spectroscopy. J Phys D Appl Phys. 2007;40(1):61–70. doi: 10.1088/0022-3727/40/1/S10.
  • Petchakup C, Li H, Hou HW. Advances in single cell impedance cytometry for biomedical applications. Micromachines. 2017;8(3):87. doi: 10.3390/mi8030087.
  • Zhu S, Zhang X, Zhou Z, et al. Microfluidic impedance cytometry for single-cell sensing: review on electrode configurations. Talanta. 2021;233:122571. doi: 10.1016/j.talanta.2021.122571.
  • Sun T, Green NG, Gawad S, et al. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol. 2007;1(5):69–79. doi: 10.1049/iet-nbt:20070019.
  • Holmes D, Morgan H. Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. Anal Chem. 2010;82(4):1455–1461. doi: 10.1021/ac902568p.
  • Honrado C, Ciuffreda L, Spencer D, et al. Dielectric characterization of Plasmodium falciparum-infected red blood cells using microfluidic impedance cytometry. J R Soc Interface. 2018;15:20180416. doi: 10.1098/rsif.2018.0416.
  • Xu Y, Xie X, Duan Y, et al. A review of impedance measurements of whole cells. Biosens Bioelectron. 2016;77:824–836. doi: 10.1016/j.bios.2015.10.027.
  • Balakrishnan SG, Ahmad MR, Koloor SSR, et al. Separation of ctDNA by superparamagnetic bead particles in microfluidic platform for early cancer detection. J Adv Res. 2021;33:109–116. doi: 10.1016/j.jare.2021.03.001.
  • Asami K. Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci. 2002;27(8):1617–1659. doi: 10.1016/S0079-6700(02)00015-1.
  • Asami K. Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method. J Phys D Appl Phys. 2006;39(3):492–499. doi: 10.1088/0022-3727/39/3/012.
  • Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems. II. The capacity of a suspension of conducting spheroids surrounded by a non-conducting membrane for a current of low frequency. Phys Rev. 1925;26(5):678–681. doi: 10.1103/PhysRev.26.678.
  • Nasir N, Al Ahmad M. Cells electrical characterization: dielectric properties, mixture, and modeling theories. J Eng. 2020;2020:1–17. doi: 10.1155/2020/9475490.
  • Asami K. Characterization of biological cells by dielectric spectroscopy. J Non-Cryst Solids. 2002;305(1–3):268–277. doi: 10.1016/S0022-3093(02)01110-9.
  • Schwan HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209.
  • Sun T, Holmes D, Gawad S, et al. High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Lab Chip. 2007;7(8):1034–1040. doi: 10.1039/b703546b.
  • Sun TAO, Green NG, Morgan H. Analytical and numerical modeling methods for impedance analysis of single cells on-chip. Nano. 2008;3(1):55–63. doi: 10.1142/S1793292008000800.
  • Lin Z, Lin SY, Xie P, et al. Rapid assessment of surface markers on cancer cells using immuno-magnetic separation and multi-frequency impedance cytometry for targeted therapy. Sci Rep. 2020;10(1):3015. doi: 10.1038/s41598-020-57540-7.
  • Fan W, Chen X, Ge Y, et al. Single-cell impedance analysis of osteogenic differentiation by droplet-based microfluidics. Biosens Bioelectron. 2019;145:111730. doi: 10.1016/j.bios.2019.111730.
  • Li H, Multari C, Palego C, et al. Differentiation of live and heat-killed E. coli by microwave impedance spectroscopy. Sens Actuators B Chem. 2018;255:1614–1622. doi: 10.1016/j.snb.2017.08.179.
  • Foster KR, Schwan HP. Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng. 1989;17(1):25–104.
  • Zhao Y, Zhao XT, Chen DY, et al. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosens Bioelectron. 2014;57:245–253. doi: 10.1016/j.bios.2014.02.026.
  • Iqbal SMA, Butt NZ. Design and analysis of microfluidic cell counter using spice simulation. SN Appl Sci. 2019;1(10):1–10. doi: 10.1007/s42452-019-1327-1.
  • Grimnes S, Martinsen OG. Bioimpedance and bioelectricity basics. Academic Press; 2000. doi: 10.1016/B978-0-12-374004-5.00006-4.
  • Mahesh K, Varma M, Sen P. Double-peak signal features in microfluidic impedance flow cytometry enable sensitive measurement of cell membrane capacitance. Lab Chip. 2020;20(22):4296–4309. doi: 10.1039/d0lc00744g.
  • Chan K, Morgan H, Morgan E, et al. Measurements of the dielectric properties of peripheral blood mononuclear cells and trophoblast cells using AC electrokinetic techniques. Biochim Biophys Acta. 2000;1500(3):313–322. doi: 10.1016/s0925-4439(99)00115-5.
  • Ojarand J, Min M, Koel A. Multichannel electrical impedance spectroscopy analyzer with microfluidic sensors. Sensors. 2019;19:1–28. doi: 10.3390/s19081891.
  • Chen L, Han Z, Fan X, et al. An impedance-coupled microfluidic device for single-cell analysis of primary cell wall regeneration. Biosens Bioelectron. 2020;165:112374. doi: 10.1016/j.bios.2020.112374.
  • Zheng S, Liu M, Tai YC. Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing. Biomed Microdevice. 2008;10(2):221–231. doi: 10.1007/s10544-007-9128-5.
  • Spencer D, Hollis V, Morgan H. Microfluidic impedance cytometry of tumour cells in blood. Biomicrofluidics. 2014;8(6):064124. doi: 10.1063/1.4904405.
  • Tan Q, Ferrier GA, Chen BK, et al. Quantification of the specific membrane capacitance of single cells using a microfluidic device and impedance spectroscopy measurement. Biomicrofluidics. 2012;6(3):34112. doi: 10.1063/1.4746249.
  • Bone S, Ginzburg BZ, Morgan H, et al. Time-domain dielectric spectroscopy applied to cell suspensions. Phys Med Biol. 1993;38(4):511–520. doi: 10.1088/0031-9155/38/4/003.
  • Han C, Liang Z, Yu D, et al. A single-cell impedance micro-cytometer featuring 3D electro-fluidic structures monolithically integrated within silver PDMS. 2019 20th International Conference on Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, Transducers 2019 Eurosensors XXXIII; IEEE; 2019. p. 9–12.
  • McGrath JS, Honrado C, Spencer D, et al. Analysis of parasitic protozoa at the single-cell level using microfluidic impedance cytometry. Sci Rep. 2017;7(1):2601. doi: 10.1038/s41598-017-02715-y.
  • Feng Y, Huang L, Zhao P, et al. A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement. Anal Chem. 2019;91(23):15204–15212. doi: 10.1021/acs.analchem.9b04083.
  • Cho S, Thielecke H. Micro hole-based cell chip with impedance spectroscopy. Biosens Bioelectron. 2007;22(8):1764–1768.
  • Chen J, Zheng Y, Tan Q, et al. A microfluidic device for simultaneous electrical and mechanical measurements on single cells. Biomicrofluidics. 2011;5(1):14113.
  • Carminati M, Ferrari G, Vahey MD, et al. Miniaturized impedance flow cytometer: design rules and integrated readout. IEEE Trans Biomed Circuits Syst. 2017;11(6):1438–1449. doi: 10.1109/TBCAS.2017.2748158.
  • Jang L-S, Wang M-H. Microfluidic device for cell capture and impedance measurement. Biomed Microdevice. 2007;9(5):737–743.
  • Mamouni J, Yang L. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells. Biomed Microdevice. 2011;13(6):1075–1088. doi: 10.1007/s10544-011-9577-8.
  • Asami K, Takahashi Y, Takashima S. Dielectric properties of mouse lymphocytes and erythrocytes. Biochim Biophys Acta. 1989;1010(1):49–55. doi: 10.1016/0167-4889(89)90183-3.
  • Lisin R, Ginzburg BZ, Schlesinger M, et al. Time domain dielectric spectroscopy study of human cells. I. Erythrocytes and ghosts. Biochim Biophys Acta. 1996;1280(1):34–40. doi: 10.1016/0005-2736(95)00266-9.
  • Gimsa J, Schnelle T, Zechel G, et al. Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin. Biophys J. 1994;66(4):1244–1253. doi: 10.1016/S0006-3495(94)80908-7.