3,177
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancement in biomarker based effective diagnosis of neonatal sepsis

ORCID Icon, , , , & ORCID Icon
Pages 476-490 | Received 06 Dec 2022, Accepted 18 Aug 2023, Published online: 01 Sep 2023

References

  • Molloy EJ, Wynn JL, Bliss J, et al. Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatr Res. 2020;88(1):2–4.
  • Jyoti A, Kumar S, Srivastava VK, et al. Neonatal sepsis at point of care. Clin Chim Acta. 2021;521:45–58.
  • Ko MH-J, Chang H-Y, Li S-T, et al. An 18-year retrospective study on the epidemiology of early-onset neonatal sepsis-emergence of uncommon pathogens. Pediatr Neonatol. 2021;62(5):491–498.
  • Glaser MA, Hughes LM, Jnah A, et al. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv Neonatal Care. 2021;21(1):49–60.
  • Qazi SA, Stoll BJ. Neonatal sepsis: a major global public health challenge. Pediatr Infect Dis J. 2009;28(1 Suppl):S1–S2.
  • Karabulut B, Arcagok BC. New diagnostic possibilities for early onset neonatal sepsis: red cell distribution width to platelet ratio. Fetal Pediatr Pathol. 2020;39(4):297–306.
  • Satar M, Arısoy AE, Çelik İH. Turkish neonatal society guideline on neonatal infections-diagnosis and treatment. Turk Pediatri Ars. 2018;53(Suppl 1):S88–S100.
  • Shah BA, Padbury JF. Neonatal sepsis: an old problem with new insights. Virulence. 2014;5(1):170–178.
  • Procianoy RS, Silveira RC. The challenges of neonatal sepsis management. J Pediatr (Rio J). 2020;96 Suppl 1(Suppl 1):80–86.
  • Wynn JL. Defining neonatal sepsis. Curr Opin Pediatr. 2016;28(2):135–140.
  • Bethou A, Bhat BV. Neonatal sepsis—newer insights. Indian J Pediatr. 2022;89(3):267–273.
  • Raimondi F, Ferrara T, Maffucci R, et al. Neonatal sepsis: a difficult diagnostic challenge. Clin Biochem. 2011;44(7):463–464.
  • Kurul Ş, Simons SH, Ramakers CR, et al. Association of inflammatory biomarkers with subsequent clinical course in suspected late onset sepsis in preterm neonates. Crit Care. 2021;25(1):1–10.
  • Martínez-Sagasti F, Velasco-López E, Domingo-Marín S, et al. Usefulness of biomarkers on infection management: with or without them? Rev Esp Quimioter. 2018;31 Suppl 1(Suppl 1):43–46.
  • Trivedi R, Amer A, Patel R, et al. Comparison of a rapid Semi-Quantitative latex agglutination slide method against quantitative particle enhanced turbidimetric immunoassay for measurement of C-ReactiveProtein. Int J Med Biomed Sci. 2019;3(5):190–195.
  • Ebenebe CU, Hesse F, Blohm ME, et al. Diagnostic accuracy of interleukin-6 for early-onset sepsis in preterm neonates. J Matern-Fetal Neonatal Med. 2021;34(2):253–258.
  • Verma MS, Tsaloglou M-N, Sisley T, et al. Sliding-strip microfluidic device enables ELISA on paper. Biosens Bioelectron. 2018;99:77–84.
  • Oeser C, Pond M, Butcher P, et al. PCR for the detection of pathogens in neonatal early onset sepsis. PLoS One. 2020;15(1):e0226817.
  • Yoon J, Cho H-Y, Shin M, et al. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B. 2020;8(33):7303–7318.
  • Kaya HO, Cetin AE, Azimzadeh M, et al. Pathogen detection with electrochemical biosensors: advantages, challenges and future perspectives. J Electroanal Chem (Lausanne). 2021;882:114989.
  • Huang X, Xu D, Chen J, et al. Smartphone-based analytical biosensors. Analyst. 2018;143(22):5339–5351.
  • Sun AC, Hall DA. Point‐of‐care smartphone‐based electrochemical biosensing. Electroanalysis. 2019;31(1):2–16.
  • La M. Electrochemical, electrochemiluminescent and photoelectrochemical immunosensors for procalcitonin detection: a review. Int J Electrochem Sci. 2020;15(7):6436–6447.
  • Tsounidi D, Petrou PS, Raptis I. Current progress on biosensors and point-of-Care devices for sepsis diagnosis. IEEE Sens J. 2021;21(11):12840–12855.
  • Murković I, Steinberg MD, Murković B. Sensors in neonatal monitoring: current practice and future trends. THC. 2003;11(6):399–412.
  • Iroh Tam P-Y, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res. 2017;82(4):574–583.
  • Hedegaard SS, Wisborg K, Hvas A-M. Diagnostic utility of biomarkers for neonatal sepsis–a systematic review. Infect Dis (Lond). 2015;47(3):117–124.
  • Balayan S, Chauhan N, Chandra R, et al. Recent advances in developing biosensing based platforms for neonatal sepsis. Biosens Bioelectron. 2020;169:112552.
  • Yochpaz S, Friedman N, Zirkin S, et al. C-reactive protein in early-onset neonatal sepsis–a cutoff point for CRP value as a predictor of early-onset neonatal sepsis in term and late preterm infants early after birth? J Maternal-Fetal Neonatal Med. 2022;35(23):4552–4557.
  • Park IH, Lee SH, Yu ST, et al. Serum procalcitonin as a diagnostic marker of neonatal sepsis. Korean J Pediatr. 2014;57(10):451–456.
  • Boseila S, Seoud I, Samy G, et al. Serum neopterin level in early onset neonatal sepsis. J Am Sci. 2011;7(7):343–352.
  • El-Masry HM, Hassan A-EA, Amin HH, et al. Evaluation of serum presepsin concentrations as a biomarker of sepsis in high-risk neonates. Al-Azhar Assiut Med J. 2021;19(1):160.
  • Ganesan P, Shanmugam P, Sattar SBA, et al. Evaluation of IL-6, CRP and hs-CRP as early markers of neonatal sepsis. J Clin Diagn Res. 2016;10(5):DC13–DC17.
  • Bharti AK, Verma MK, Gupta A, et al. Role of procalcitonin in diagnosis of neonatal sepsis and procalcitonin guided duration of antibiotic therapy. 2020.
  • Ahmed AM, Mohammed AT, Bastawy S, et al. Serum biomarkers for the early detection of the early-onset neonatal sepsis: a single-center prospective study. Adv Neonatal Care. 2019;19(5):E26–E32.
  • Edmond K, Zaidi A. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med. 2010;7(3):e1000213.
  • Zea-Vera A, Ochoa TJ. Challenges in the diagnosis and management of neonatal sepsis. J Trop Pediatr. 2015;61(1):1–13.
  • Rajeev D, Honnumurthy J, Avinash S. Predictability of biomarkers in diagnosis of neonatal sepsis: a cross sectional study. Int J Contemp Pediatr. 2016;3(2):485.
  • Tejaswi Nandan D, Vijay M. Assessment of the expenses and benefits of procalcitonin testing in the diagnosis of early onset neonatal sepsis. Eur J Mol Clin Med. 2021;7(9):2798–2805.
  • Cetinkaya M, Özkan H, Köksal N, et al. Comparison of serum amyloid a concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. J Perinatol. 2009;29(3):225–231.
  • Al-Azaowi OA, El-Kaream A, Samir A, et al. Procalcitonin as a diagnostic marker for neonatal sepsis. J Biosci Appl Res. 2018;4(4):432–443.
  • Aloisio E, Dolci A, Panteghini M. Procalcitonin: between evidence and critical issues. Clin Chim Acta. 2019;496:7–12.
  • Abd Elkhalek HM, Abed N, Abdel Haie O, et al. Role of serum amyloid a protein in the early detection of late onset sepsis in neonate. Benha Med J. 2020;0(0):0–0.
  • Wu F, Hou X, Sun R, et al. The predictive value of joint detection of serum amyloid protein A, PCT, and Hs-CRP in the diagnosis and efficacy of neonatal septicemia. Eur Rev Med Pharmacol Sci. 2019;23(13):5904–5911.
  • Dessì A, Pravettoni C, Ottonello G, et al. Neonatal sepsis. J Pediatr Neonatal Individual Med (JPNIM). 2014;3(2):e030273–e.
  • Leante-Castellanos JL, de Guadiana-Romualdo LG, Fuentes-Gutiérrez C, et al. The value of lipopolysaccharide binding protein for diagnosis of late-onset neonatal sepsis in very low birth weight infants. J Perinat Med. 2015;43(2):253–257.
  • Pavcnik-Arnol M, Hojker S, Derganc M. Lipopolysaccharide-binding protein in critically ill neonates and children with suspected infection: comparison with procalcitonin, interleukin-6, and C-reactive protein. Intensive Care Med. 2004;30(7):1454–1460.
  • Groselj-Grenc M, Ihan A, Pavcnik-Arnol M, et al. Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med. 2009;35(11):1950–1958.
  • Sharma A, Thakur A, Bhardwaj C, et al. Potential biomarkers for diagnosing neonatal sepsis. Curr Med Res Pract. 2020;10(1):12–17.
  • Bhowmik A, Samanta M, Hazra A, et al. Study to evaluate the role of TNFa, IL1ß, IL6 in diagnosis and severity assessment of neonatal sepsis among term, appropriate for gestational age newborns. Perinatal J. 2021;29(3):179–185.
  • Prashant A, Vishwanath P, Kulkarni P, et al. Comparative assessment of cytokines and other inflammatory markers for the early diagnosis of neonatal sepsis–a case control study. PLoS One. 2013;8(7):e68426.
  • Boskabadi H, Zakerihamidi M. Evaluate the diagnosis of neonatal sepsis by measuring interleukins: a systematic review. Pediatr Neonatol. 2018;59(4):329–338.
  • Mussap M, Noto A, Cibecchini F, et al. Emerging biomarkers in neonatal sepsis. Drugs Fut. 2012;37(5):353.
  • Kocabaş E, Sarikçioğlu A, Aksaray N, et al. Role of procalcitonin, C-reactive protein, interleukin-6, interleukin-8 and tumor necrosis factor-alpha in the diagnosis of neonatal sepsis. Turk J Pediatr. 2007;49(1):7–20.
  • Gilfillan M, Bhandari V. Neonatal sepsis biomarkers: where are we now. RRN. 2019;ume 9:9–20.
  • Mally P, Xu J, Hendricks-Munoz KD. Biomarkers for neonatal sepsis: recent developments. Res Rep Neonatol. 2014;4:157–168.
  • El-Madbouly AA, El Sehemawy AA, Eldesoky NA, et al. Utility of presepsin, soluble triggering receptor expressed on myeloid cells-1, and neutrophil CD64 for early detection of neonatal sepsis. Infect Drug Resist. 2019;12:311–319.
  • Wang K, Bhandari V, Chepustanova S, et al. Which biomarkers reveal neonatal sepsis? PLoS One. 2013;8(12):e82700.
  • Fouad NA, Fouad MA, Assar EH, et al. Combination of procalcitonin, CRP and CD11b biomarkers in early detection of neonatal sepsis. Egypt J Immunol. 2020;27(1):77–86.
  • Hashem HE, Ibrahim ZH, Ahmed WO. Diagnostic, prognostic, predictive, and monitoring role of neutrophil CD11b and monocyte CD14 in neonatal sepsis. Dis Markers. 2021;2021:4537760–4537712.
  • Delanghe JR, Speeckaert MM. Translational research and biomarkers in neonatal sepsis. Clin Chim Acta. 2015;451(Pt A):46–64.
  • Awad H-M, Hawary M-A, Kholef EFM, et al. Serum neopterin level in early onset neonatal sepsis. Egypt J Hosp Med. 2020;81(1):1193–1203.
  • Singh Laishram R, Khuraijam D. R. Hematological and biological markers of neonatal sepsis. Iran J Pathol. 2013;8(3):137–146.
  • Hincu M-A, Zonda G-I, Stanciu GD, et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis. Children. 2020;7(12):309.
  • Kumar N, Dayal R, Singh P, et al. A comparative evaluation of presepsin with procalcitonin and CRP in diagnosing neonatal sepsis. Indian J Pediatr. 2019;86(2):177–179.
  • Rowisha MA, Ibrahim AM, Saad MA. Presepsin as an early diagnostic marker of neonatal sepsis in preterm neonate.
  • Poggi C, Bianconi T, Gozzini E, et al. Presepsin for the detection of late-onset sepsis in preterm newborns. Pediatrics. 2015;135(1):68–75.
  • Montaldo P, Rosso R, Santantonio A, et al. Presepsin for the detection of early-onset sepsis in preterm newborns. Pediatr Res. 2017;81(2):329–334.
  • Rao L, Song Z, Yu X, et al. Progranulin as a novel biomarker in diagnosis of early-onset neonatal sepsis. Cytokine. 2020;128:155000.
  • Yang K-D, He Y, Xiao S, et al. Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates. Eur J Clin Microbiol Infect Dis. 2020;39(12):2405–2414.
  • Cantey JB, Bultmann CR. C-reactive protein testing in late-onset neonatal sepsis: hazardous waste. JAMA Pediatr. 2020;174(3):235–236.
  • Avan A, Tavakoly Sany SB, Ghayour‐Mobarhan M, et al. Serum C‐reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol. 2018;233(11):8508–8525.
  • Totan M, Antonescu E, Catana MG, et al. C-reactive protein-A predictable biomarker in ischemic stroke. Rev Chim. 2019;70(6):2290–2293.
  • Vuong NL, Le Duyen HT, Lam PK, et al. C-reactive protein as a potential biomarker for disease progression in dengue: a multi-country observational study. BMC Med. 2020;18(1):35.
  • Karaboğa MNS, Sezgintürk MK. A novel silanization agent based single used biosensing system: detection of C-reactive protein as a potential alzheimer’s disease blood biomarker. J Pharm Biomed Anal. 2018;154:227–235.
  • Shrotriya S, Walsh D, Nowacki AS, et al. Serum C-reactive protein is an important and powerful prognostic biomarker in most adult solid tumors. PLoS One. 2018;13(8):e0202555.
  • Tan C, Huang Y, Shi F, et al. C‐reactive protein correlates with computed tomographic findings and predicts severe COVID‐19 early. J Med Virol. 2020;92(7):856–862.
  • Sharifpour M, Rangaraju S, Liu M, et al. C-Reactive protein as a prognostic indicator in hospitalized patients with COVID-19. PLoS One. 2020;15(11):e0242400.
  • Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020;50(4):332–334.
  • Sahu BR, Kampa RK, Padhi A, et al. C-reactive protein: a promising biomarker for poor prognosis in COVID-19 infection. Clin Chim Acta. 2020;509:91–94.
  • Eschborn S, Weitkamp J-H. Procalcitonin versus C-reactive protein: review of kinetics and performance for diagnosis of neonatal sepsis. J Perinatol. 2019;39(7):893–903.
  • Tessema B, Lippmann N, Willenberg A, et al. The diagnostic performance of interleukin-6 and C-reactive protein for early identification of neonatal sepsis. Diagnostics. 2020;10(11):978.
  • Song Y, Chen Y, Dong X, et al. Diagnostic value of neutrophil CD64 combined with CRP for neonatal sepsis: a meta-analysis. Am J Emerg Med. 2019;37(8):1571–1576.
  • Edgar JDM, Gabriel V, Gallimore JR, et al. A prospective study of the sensitivity, specificity and diagnostic performance of soluble intercellular adhesion molecule 1, highly sensitive C-reactive protein, soluble E-selectin and serum amyloid a in the diagnosis of neonatal infection. BMC Pediatr. 2010;10(1):22.
  • Lam HS, Ng PC. Biochemical markers of neonatal sepsis. Pathology. 2008;40(2):141–148.
  • Datla S, Kitchanan S, Sethuraman G. Diagnostic reliability of salivary C-reactive protein as an alternative noninvasive biomarker of neonatal sepsis. Indian Pediatr. 2021;58(8):745–748.
  • Barekatain B, HasanGhalyaei N, Mohammadizadeh M, et al. Investigation of salivary C-reactive protein and interleukin-18 for the diagnosis of neonatal sepsis. J Res Med Sci. 2021;26(1):131.
  • Tanak AS, Jagannath B, Tamrakar Y, et al. Non-faradaic electrochemical impedimetric profiling of procalcitonin and C-reactive protein as a dual marker biosensor for early sepsis detection. Anal Chim Acta X. 2019;3:100029.
  • Liu C, Fang C, Xie L. Diagnostic utility of procalcitonin as a biomarker for late-onset neonatal sepsis. Transl Pediatr. 2020;9(3):237–242.
  • Mithal LB, Palac HL, Yogev R, et al. Cord blood acute phase reactants predict early onset neonatal sepsis in preterm infants. PLoS One. 2017;12(1):e0168677.
  • Zhang J, Oueslati R, Cheng C, et al. Rapid, highly sensitive detection of gram-negative bacteria with lipopolysaccharide based disposable aptasensor. Biosens Bioelectron. 2018;112:48–53.
  • Wu Z, Zhang Z, Lei Z, et al. CD14: biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019;48:24–31.
  • Ye Q, Du L-Z, Shao W-X, et al. Utility of cytokines to predict neonatal sepsis. Pediatr Res. 2017;81(4):616–621.
  • Leal YA, Álvarez-Nemegyei J, Lavadores-May AI, et al. Cytokine profile as diagnostic and prognostic factor in neonatal sepsis. J Matern-Fetal Neonatal Med. 2019;32(17):2830–2836.
  • Celik İH, Demirel FG, Uras N, et al. What are the cut‐off levels for IL‐6 and CRP in neonatal sepsis? J Clin Lab Anal. 2010;24(6):407–412.
  • Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin. 2013;60(2):367–389.
  • Deleon C, Shattuck K, Jain SK. Biomarkers of neonatal sepsis. NeoReviews. 2015;16(5):e297–e308.
  • Zhou M, Cheng S, Yu J, et al. Interleukin-8 for diagnosis of neonatal sepsis: a meta-analysis. PLoS One. 2015;10(5):e0127170.
  • Ucar B, Yildiz B, Aksit MA, et al. Serum amyloid A, procalcitonin, tumor necrosis factor-, and interleukin-1 levels in neonatal Late-Onset sepsis. Mediators Inflamm. 2008;2008:737141–737147.
  • Lv B, Huang J, Yuan H, et al. Tumor necrosis factor-α as a diagnostic marker for neonatal sepsis: a meta-analysis. Sci World J. 2014;2014:1–14.
  • Fattah M, Al Fadhil AO, Asaif S, et al. Utility of cytokine, adhesion molecule and acute phase proteins in early diagnosis of neonatal sepsis. J Nat Sci Biol Med. 2017;8(1):32–39.
  • Arunachalam AR, Pammi M. Biomarkers in early-onset neonatal sepsis: an update. Ann Clin Med Microbio. 2015;1(2):1007.
  • El Shimi MS, Abou Shady NM, Hamed GM, et al. Significance of neutrophilic CD64 as an early marker for detection of neonatal sepsis and prediction of disease outcome. J Maternal-Fetal Neonatal Med. 2017;30(14):1709–1714.
  • Abd Elkareem RM, Ahmed HM, Meabed MH, et al. Diagnostic value of CD64 in early detection of neonatal sepsis. Comp Clin Pathol. 2020;29(3):639–643.
  • ELMeneza S, Mohamed W, Elbagoury I, et al. Role of neutrophil CD11b expression in diagnosis of earlyonset neonatal sepsis in full-term infant. Clin Exp Pediatr. 2021;64(1):44–45.
  • Qiu X, Li J, Yang X, et al. Is neutrophil CD11b a special marker for the early diagnosis of sepsis in neonates? A systematic review and meta-analysis. BMJ Open. 2019;9(4):e025222.
  • Heo JS. Neutrophil CD11b as a promising marker for early detection of neonatal sepsis. Clin Exp Pediatr. 2021;64(1):28–30.
  • Saeed OG, Zamzam SM, Elnga AMA, et al. Sepsis markers at PICU and the utility of serum neopterin. Eur J Mol Clin Med. 2021;8(3):3813–3823.
  • Centi S, Tombelli S, Puntoni M, et al. Detection of biomarkers for inflammatory diseases by an electrochemical immunoassay: the case of neopterin. Talanta. 2015;134:48–53.
  • Selvolini G, Marrazza G. MIP-based sensors: promising new tools for cancer biomarker determination. Sensors. 2017;17(4):718.
  • Kojic D, Siegler BH, Uhle F, et al. Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis? World J Exp Med. 2015;5(2):50–63.
  • Zou Q, Wen W, Zhang X. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014;5(1):16–19.
  • Parri N, Trippella G, Lisi C, et al. Accuracy of presepsin in neonatal sepsis: systematic review and meta-analysis. Expert Rev Anti Infect Ther. 2019;17(4):223–232.
  • Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376.
  • Mahmoud Zayed K, Abd ELmoez Ali Saad A, Mohamed Amin W, et al. Diagnostic value of presepsin in detection of early-onset neonatal sepsis. Al-Azhar J Pediatr. 2020;23(2):825–851.
  • Memar MY, Baghi HB. Presepsin: a promising biomarker for the detection of bacterial infections. Biomed Pharmacother. 2019;111:649–656.
  • Sleegers K, Brouwers N, Van Broeckhoven C. Role of progranulin as a biomarker for alzheimer’s disease. Biomark Med. 2010;4(1):37–50.
  • Edelman MJ, Feliciano J, Yue B, et al. GP88 (progranulin): a novel tissue and circulating biomarker for non–small cell lung carcinoma. Hum Pathol. 2014;45(9):1893–1899.
  • Ghidoni R, Paterlini A, Benussi L. Circulating progranulin as a biomarker for neurodegenerative diseases. Am J Neurodegen Dis. 2012;1(2):180.
  • Z Oikonomakou M, Gkentzi D, Gogos C, et al. Biomarkers in pediatric sepsis: a review of recent literature. Biomark Med. 2020;14(10):895–917.
  • Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: an overview. Microb Pathog. 2017;107:234–242.
  • Soto S, Bosch J, Jimenez de Anta M, et al. Comparative study of virulence traits of Escherichia coli clinical isolates causing early and late neonatal sepsis. J Clin Microbiol. 2008;46(3):1123–1125.
  • Rajagopal L. Understanding the regulation of group B streptococcal virulence factors. 2009.
  • Xie K, Kong S, Li F, et al. Bioinformatics-Based study to investigate potential differentially expressed genes and miRNAs in pediatric sepsis. Med Sci Monit. 2020;26:e923881-1.
  • Khaertynov KS, Boichuk S, Khaiboullina S, et al. Comparative assessment of cytokine pattern in early and late onset of neonatal sepsis. J Immunol Res. 2017;2017:8601063–8601068.
  • Cardoso FL, Herz J, Fernandes A, et al. Systemic inflammation in early neonatal mice induces transient and lasting neurodegenerative effects. J Neuroinflamm. 2015;12(1):82.
  • Smith CL, Dickinson P, Forster T, et al. Identification of a human neonatal immune-metabolic network associated with bacterial infection. Nat Commun. 2014;5(1):4649.
  • Fatmi A, Rebiahi SA, Chabni N, et al. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol Med. 2020;26(1):1–9.
  • Abdelaleem OO, Mohammed SR, El Sayed HS, et al. Serum miR-34a-5p and miR-199a-3p as new biomarkers of neonatal sepsis. PLoS One. 2022;17(1):e0262339.
  • El-Hefnawy SM, Mostafa RG, Elfeshawy EM, et al. Biochemical and molecular study on serum miRNA-16a and miRNA-451 as neonatal sepsis biomarkers. Biochem Biophys Rep. 2021;25:100915.
  • Huang L, Qiao L, Zhu H, et al. Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression. Ital J Pediatr. 2018;44(1):145.
  • Ahmad S, Ahmed MM, Hasan P, et al. Identification and validation of potential miRNAs, as biomarkers for sepsis and associated lung injury: a network-based approach. Genes (Basel). 2020;11(11):1327.
  • Bryan T, Luo X, Bueno PR, et al. An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens Bioelectron. 2013;39(1):94–98.
  • Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, et al. An array-based electrochemical magneto-immunosensor for early neonatal sepsis diagnostic: fast and accurate determination of C-reactive protein in whole blood and plasma samples. Microchem J. 2020;157:104913.
  • Balayan S, Chauhan N, Chandra R, et al. Electrochemical based C-Reactive protein (CRP) sensing through molecularly imprinted polymer (MIP) pore structure coupled with Bi-Metallic tuned Screen-Printed electrode. Biointerface Res Appl Chem. 2022;6:38.
  • Lakshmanakumar M, Nesakumar N, Sethuraman S, et al. Fabrication of GQD-Electrodeposited Screen-Printed carbon electrodes for the detection of the CRP biomarker. ACS Omega. 2021;6(48):32528–32536.
  • Guillem P, Bustos R-H, Garzon V, et al. A low-cost electrochemical biosensor platform for C-reactive protein detection. Sens Bio-Sens Res. 2021;31:100402.
  • Amouzadeh Tabrizi M, Acedo P. Highly sensitive RNA-Based electrochemical aptasensor for the determination of C-Reactive protein using carbon Nanofiber-Chitosan modified Screen-Printed electrode. Nanomaterials. 2022;12(3):415.
  • Mahyari M, Hooshmand SE, Sepahvand H, et al. Gold nanoparticles anchored onto covalent poly deep eutectic solvent functionalized graphene: an electrochemical aptasensor for the detection of C-reactive protein. Mater Chem Phys. 2021;269:124730.
  • Yang Z-H, Zhuo Y, Yuan R, et al. Electrochemical activity and electrocatalytic property of cobalt phthalocyanine nanoparticles-based immunosensor for sensitive detection of procalcitonin. Sens Actuators, B. 2016;227:212–219.
  • Molinero-Fernández Á, López MÁ, Escarpa A. An on-chip microfluidic-based electrochemical magneto-immunoassay for the determination of procalcitonin in plasma obtained from sepsis diagnosed preterm neonates. Analyst. 2020;145(14):5004–5010.
  • Liu J, Liu Y, Bao L, et al. Electrochemical sensitive determination of sepsis biomarker procalcitonin at graphitic carbon nitride nanosheets modified electrodes. Available at SSRN 3950172. 2021.
  • Jin Y, Wu J, Hu D, et al. Development of enzyme-free immunosensor based on nanobrush and fluorescence dye for sensitive detection of procalcitonin. Dyes Pigm. 2021;193:109548.
  • Ding H, Yang L, Jia H, et al. Label-free electrochemical immunosensor with palladium nanoparticles functionalized MoS2/NiCo heterostructures for sensitive procalcitonin detection. Sens Actuators, B. 2020;312:127980.
  • Qu L, Yang L, Ren Y, et al. A signal-off electrochemical sensing platform based on Fe3S4-Pd and pineal mesoporous bioactive glass for procalcitonin detection. Sens Actuators, B. 2020;320:128324.
  • Balayan S, Chauhan N, Chandra R, et al. Molecular imprinting based electrochemical biosensor for identification of serum amyloid A (SAA), a neonatal sepsis biomarker. Int J Biol Macromol. 2022;195:589–597.
  • Xia C, Li Y, Yuan G, et al. Immunoassay for serum amyloid a using a glassy carbon electrode modified with carboxy-polypyrrole, multiwalled carbon nanotubes, ionic liquid and chitosan. Microchim Acta. 2015;182(7-8):1395–1402.
  • Panneer Selvam A, Prasad S. Companion and point-of-care sensor system for rapid multiplexed detection of a panel of infectious disease markers. SLAS Technol. 2017;22(3):338–347.
  • Russell C, Ward AC, Vezza V, et al. Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosens Bioelectron. 2019;126:806–814.
  • Tanak AS, Muthukumar S, Krishnan S, et al. Multiplexed cytokine detection using electrochemical point-of-care sensing device towards rapid sepsis endotyping. Biosens Bioelectron. 2021;171:112726.
  • Kamakoti V, Kinnamon D, Choi KH, et al. Fully electronic urine dipstick probe for combinatorial detection of inflammatory biomarkers. Future Sci OA. 2018;4(5):FSO301.
  • Tang P, Zhang H, Huo J, et al. An electrochemical sensor based on iron (II, III)@ graphene oxide@ molecularly imprinted polymer nanoparticles for interleukin-8 detection in saliva. Anal Methods. 2015;7(18):7784–7791.
  • Li L, Li M, Wang W, et al. High sensitivity determination of TNF-α for early diagnosis of neonatal infections with a novel and reusable electrochemical sensor. Sensors. 2017;17(5):992.
  • Sharma PS, Wojnarowicz A, Sosnowska M, et al. Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens Bioelectron. 2016;77:565–572.
  • Huang C-Y, Hsieh C-H, Chen Y-L, et al. Portable potentiostatic sensor integrated with neopterin-imprinted poly (ethylene-co-vinyl alcohol)-based electrode. IET Nanobiotechnol. 2011;5(4):126–131.
  • Morad EA, Rabie RA, Almalky MA, et al. Evaluation of procalcitonin, C-reactive protein, and interleukin-6 as early markers for diagnosis of neonatal sepsis. Int J Microbiol. 2020;2020:8889086–8889089.
  • Anugu NR, Khan S. Comparing the diagnostic accuracy of procalcitonin and C-Reactive protein in neonatal sepsis: a systematic review. Cureus. 2021;13(11):e19485.
  • Kamel MM, Abd-Ullah Hf E, Sayed M, et al. Presepsin as an early predictor of neonatal sepsis. Int J Pediatr. 2021;9:13359–13369.
  • Bellos I, Fitrou G, Pergialiotis V, et al. The diagnostic accuracy of presepsin in neonatal sepsis: a meta-analysis. Eur J Pediatr. 2018;177(5):625–632.
  • Iskandar A, Arthamin MZ, Indriana K, et al. Comparison between presepsin and procalcitonin in early diagnosis of neonatal sepsis. J Maternal-Fetal Neonatal Med. 2019;32(23):3903–3908.
  • Li S, Renick P, Senkowsky J, et al. Diagnostics for wound infections. Adv Wound Care (New Rochelle). 2021;10(6):317–327.
  • Molinero-Fernández Á, Moreno-Guzmán M, López MÁ, et al. Magnetic bead-based electrochemical immunoassays on-drop and on-chip for procalcitonin determination: disposable tools for clinical sepsis diagnosis. Biosensors (Basel). 2020;10(6):66.