1,651
Views
0
CrossRef citations to date
0
Altmetric
Review article

Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, , , , , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 491-508 | Received 17 May 2023, Accepted 07 Aug 2023, Published online: 11 Sep 2023

References

  • Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development. 2020;147(22):dev169862. doi:10.1242/dev.169862.
  • Grewal SS, Edgar BA. Controlling cell division in yeast and animals: Does size matter? J Biol. 2003;2(1):5. doi:10.1186/1475-4924-2-5.
  • Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003. doi:10.1242/dev.005439.
  • Inman JL, Robertson C, Mott JD, et al. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142(6):1028–1042. doi:10.1242/dev.087643.
  • Bach K, Pensa S, Grzelak M, et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1):2128. doi:10.1038/s41467-017-02001-5.
  • Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1(4):467–475. doi:10.1016/s1534-5807(01)00064-8.
  • Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–725. doi:10.1038/nrm1714.
  • Zhao D, Ma G, Zhang X, et al. Zinc finger homeodomain factor Zfhx3 is essential for mammary lactogenic differentiation by maintaining prolactin signaling activity. J Biol Chem. 2016;291(24):12809–12820. doi:10.1074/jbc.M116.719377.
  • Brisken C, Ataca D. Endocrine hormones and local signals during the development of the mouse mammary gland. Wiley Interdiscip Rev Dev Biol. 2015;4(3):181–195. doi:10.1002/wdev.172.
  • Melo AI, González-Mariscal G. Communication by olfactory signals in rabbits: its role in reproduction. Vitam Horm. 2010;83:351–371.
  • Murphrey MB, Safadi AO, Histology VT, et al. StatPearls. Treasure Island (FL): Stat Pearls Publishing; 2023; [cited 2022 Oct 10]. Available from https://www.ncbi.nlm.nih.gov/books/NBK482199/
  • Biswas SK, Banerjee S, Baker GW, et al. The mammary gland: basic structure and molecular signaling during development. Int J Mol Sci. 2022;23(7):3883. doi:10.3390/ijms23073883.
  • Rios AC, Fu NY, Jamieson PR, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7(1):11400. doi:10.1038/ncomms11400.
  • Romagnoli M, Bresson L, Di-Cicco A, et al. Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. Development. 2020;147(4):dev181552. doi:10.1242/dev.181552.
  • Raymond K, Faraldo MM, Deugnier MA, et al. Integrins in mammary development. Semin Cell Dev Biol. 2012;23(5):599–605. doi:10.1016/j.semcdb.2012.03.008.
  • Chammas R, Taverna D, Cella N, et al. Laminin and tenascin assembly and expression regulate HC11 mouse mammary cell differentiation. J Cell Sci. 1994;107(Pt 4):1031–1040. doi:10.1242/jcs.107.4.1031.
  • Wirl G, Hermann M, Ekblom P, et al. Mammary epithelial cell differentiation in vitro is regulated by an interplay of EGF action and tenascin-C downregulation. J Cell Sci. 1995;108(Pt 6):2445–2456. doi:10.1242/jcs.108.6.2445.
  • Morrison B, Cutler ML. The contribution of adhesion signaling to lactogenesis. J Cell Commun Signal. 2010;4(3):131–139. doi:10.1007/s12079-010-0099-6.
  • Wang W, Morrison B, Galbaugh T, et al. Glucocorticoid-induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells. J Cell Physiol. 2008;214(1):38–46. doi:10.1002/jcp.21159.
  • Itahana Y, Piens M, Sumida T, et al. Regulation of clusterin expression in mammary epithelial cells. Exp Cell Res. 2007;313(5):943–951. doi:10.1016/j.yexcr.2006.12.010.
  • Bruce A, Johnson A, Lewis J, et al. Integrins. Molecular biology of the cell, 4th ed. New York: Garland Science; 2002.
  • Streuli CH, Bailey N, Bissell MJ, et al. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol. 1991;115(5):1383–1395. doi:10.1083/jcb.115.5.1383.
  • Taddei I, Faraldo MM, Teulière J, et al. Integrins in mammary gland development and differentiation of mammary epithelium. J Mammary Gland Biol Neoplasia. 2003;8(4):383–394. doi:10.1023/B:JOMG.0000017426.74915.b9.
  • Li N, Zhang Y, Naylor MJ, et al. Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. Embo J. 2005;24(11):1942–1953. doi:10.1038/sj.emboj.7600674.
  • Naylor MJ, Li N, Cheung J, et al. Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J Cell Biol. 2005;171(4):717–728. doi:10.1083/jcb.200503144.
  • Romagnoli M, Cagnet S, Chiche A, et al. Deciphering the mammary stem cell niche: a role for Laminin-Binding integrins. Stem Cell Reports. 2019;12(4):831–844. doi:10.1016/j.stemcr.2019.02.008.
  • Leahy DJ, Hendrickson WA, Aukhil I, et al. Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science. 1992;258(5084):987–991. doi:10.1126/science.1279805.
  • Bristow J, Carey W, Egging D, et al. Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2005;139C(1):24–30. doi:10.1002/ajmg.c.30071.
  • Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296(5570):1046–1049. doi:10.1126/science.1067431.
  • Wiseman BS, Sternlicht MD, Lund LR, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162(6):1123–1133. doi:10.1083/jcb.200302090.
  • Stelwagen K, McFadden HA, Demmer J, et al. Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein occludin in mammary cells. Mol Cell Endocrinol. 1999;156(1–2):55–61. doi:10.1016/s0303-7207(99)00145-8.
  • Morrison BL, Jose CC, Cutler ML. Connective tissue growth factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion. BMC Cell Biol. 2010;11(1):35. doi:10.1186/1471-2121-11-35.
  • Kozłowski M, Wilczak J, Motyl T, et al. Role of extracellular matrix and prolactin in functional differentiation of bovine BME-UV1 mammary epithelial cells. Pol J Vet Sci. 2011;14(3):433–442. doi:10.2478/v10181-011-0064-1.
  • Wanyonyi SS, Kumar A, Du Preez R, et al. Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix. Biochem Biophys Rep. 2017;12:120–128. doi:10.1016/j.bbrep.2017.08.013.
  • Lee YJ, Hsu TC, Du JY, et al. Extracellular matrix controls insulin signaling in mammary epithelial cells through the RhoA/Rok pathway. J Cell Physiol. 2009;220(2):476–484. doi:10.1002/jcp.21793.
  • Barcellos-Hoff MH, Aggeler J, Ram TG, et al. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989;105(2):223–235. doi:10.1242/dev.105.2.223.
  • Aggeler J, Ward J, Blackie LM, et al. Cytodifferentiation of mouse mammary epithelial cells cultured on a reconstituted basement membrane reveals striking similarities to development in vivo. J Cell Sci. 1991;99(Pt 2):407–417. doi:10.1242/jcs.99.2.407.
  • Darcy KM, Zangani D, Shea-Eaton W, et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2000;36(9):578–592. doi:10.1007/BF02577526.
  • Xu R, Spencer VA, Bissell MJ, et al. Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. J Biol Chem. 2007;282(20):14992–14999. doi:10.1074/jbc.M610316200.
  • Knobil E, Neill JD, editors. The physiology of reproduction, 3rd ed. Amsterdam: Elsevier; 2006.
  • Freeman ME, Kanyicska B. Prolactin: structure, function, and regulation of secretion. In: Fink JW, editor. Encyclopedia of stress, Vol. 3. San Diego: Academic Press; 2001. p. 71–78. doi:10.1016/B0-12-227555-6/00241-2.
  • Boon WC, Chow JDY. The complex relationship between prolactin and the metabolic syndrome. J Endocrinol. 2017;232(1):R1–R15.
  • Oftedal OT. The mammary gland and its origin during synapsid evolution. J Mammary Gland Biol Neoplasia. 2002;7(3):225–252. doi:10.1023/a:1022896515287.
  • Sánchez J, Priego T, Palou A. The hypothalamus-pituitary-adipose tissue axis: What is the relevance of its sexual dimorphism in metabolic regulation? Ann NY Acad Sci. 2008;1143:112–128.
  • Ali SA. Phosphoproteomics of mammary gland during different stages of development and its role in lactation [Doctoral dissertation]. National Dairy Research Institute; 2021.
  • Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7(1):49–66. doi:10.1023/a:1015770423167.
  • Stiening CM, Hoying JB, Abdallah MB, et al. The effects of endocrine and mechanical stimulation on stage I lactogenesis in bovine mammary epithelial cells. J Dairy Sci. 2008;91(3):1053–1066. doi:10.3168/jds.2007-0161.
  • Pang WW, Hartmann PE. Initiation of human lactation: secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007;12(4):211–221. doi:10.1007/s10911-007-9054-4.
  • Mida K, Shamay A, Argov-Argaman N. Elongation and desaturation pathways in mammary gland epithelial cells are associated with modulation of fat and membrane composition. J Agric Food Chem. 2012;60(42):10657–10665. doi:10.1021/jf302757j.
  • Shao Y, Wall EH, McFadden TB, et al. Lactogenic hormones stimulate expression of lipogenic genes but not glucose transporters in bovine mammary gland. Domest Anim Endocrinol. 2013;44(2):57–69. doi:10.1016/j.domaniend.2012.09.001.
  • Cella N, Cornejo-Uribe RR, Montes GS, et al. The lysosomal-associated membrane protein LAMP-1 is a novel differentiation marker for HC11 mouse mammary epithelial cells. Differentiation. 1996;61(2):113–120. doi:10.1046/j.1432-0436.1996.6120113.x.
  • Li C, Wang M, Zhang T, et al. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J Dairy Sci. 2019;102(2):1736–1746. doi:10.3168/jds.2018-15492.
  • Watt AP, Lefevre C, Wong CS, et al. Insulin regulates human mammosphere development and function. Cell Tissue Res. 2021;384(2):333–352. doi:10.1007/s00441-020-03360-0.
  • Gallego MI, Binart N, Robinson GW, et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol. 2001;229(1):163–175. doi:10.1006/dbio.2000.9961.
  • Mukhina S, Liu D, Guo K, et al. Autocrine growth hormone prevents lactogenic differentiation of mouse mammary epithelial cells. Endocrinology. 2006;147(4):1819–1829. doi:10.1210/en.2005-1082.
  • Darcy KM, Shoemaker SF, Lee PP, et al. Hydrocortisone and progesterone regulation of the proliferation, morphogenesis, and functional differentiation of normal rat mammary epithelial cells in three-dimensional primary culture. J Cell Physiol. 1995;163(2):365–379. doi:10.1002/jcp.1041630217.
  • Bomfim GF, Merighe GKF, de Oliveira SA, et al. Acute and chronic effects of cortisol on milk yield, the expression of key receptors, and apoptosis of mammary epithelial cells in Saanen goats. J Dairy Sci. 2022;105(1):818–830. doi:10.3168/jds.2021-20364.
  • Baratta M, Grolli S, Poletti A, et al. Role of androgens in proliferation and differentiation of mouse mammary epithelial cell line HC11. J Endocrinol. 2000;167(1):53–60. doi:10.1677/joe.0.1670053.
  • Lee PP, Darcy KM, Shudo K, et al. Interaction of retinoids with steroid and peptide hormones in modulating morphological and functional differentiation of normal rat mammary epithelial cells. Endocrinology. 1995;136(4):1718–1730. doi:10.1210/endo.136.4.7895683.
  • Hernandez LL, Gregerson KA, Horseman ND. Mammary gland serotonin regulates parathyroid hormone-related protein and other bone-related signals. Am J Physiol Endocrinol Metab. 2012;302(8):E1009–E1015. doi:10.1152/ajpendo.00666.2011.
  • VanHouten JN, Dann P, Stewart AF, et al. Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J Clin Invest. 2003;112(9):1429–1436. doi:10.1172/JCI200319504.
  • Sheftel CM, Hernandez LL. Serotonin stimulated parathyroid hormone related protein induction in the mammary epithelia by transglutaminase-dependent serotonylation. PLoS One. 2020;15(10):e0241192. doi:10.1371/journal.pone.0241192.
  • Goffin V, Binart N, Touraine P, et al. Prolactin: the new biology of an old hormone. Annu Rev Physiol. 2019;81:47–67. doi:10.1146/annurev-physiol-020518-114632.
  • Giepmans BN, van der Doelen AA, Sterk LM, et al. The RAS signaling pathway in GH and PRL secreting pituitary cells. Front Endocrinol. 2011;2:74. doi:10.3389/fendo.2011.00074.
  • Clevenger CV, Furth PA, Hankinson SE, et al. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24(1):1–27. doi:10.1210/er.2001-0036.
  • Liu J, Ding Z, Li Y, et al. Crosstalk between PI3K/AKT and PRL signaling pathways in breast cancer. Front Oncol. 2021;11:625695.
  • Muraoka-Cook RS, Sandahl MA, Hunter D, et al. Prolactin and ErbB4/HER4 signaling interact via janus kinase 2 to induce mammary epithelial cell gene expression differentiation. Mol Endocrinol. 2008;22(10):2307–2321. doi:10.1210/me.2008-0055.
  • Wagner KU, Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression. J Mammary Gland Biol Neoplasia. 2008;13(1):93–103. doi:10.1007/s10911-008-9062-z.
  • Wagner KU, Schmidt JW. The two faces of Janus kinases and their respective STATs in mammary gland development and cancer. J Carcinog. 2011;10(1):32. doi:10.4103/1477-3163.90677.
  • Stern DF. ErbBs in mammary development. Exp Cell Res. 2003;284(1):89–98. doi:10.1016/s0014-4827(02)00103-9.
  • Jones FE, Golding JP, Gassmann M. ErbB4 signaling during breast and neural development: novel genetic models reveal unique ErbB4 activities. Cell Cycle. 2003;2(6):554–558. doi:10.4161/cc.2.6.598.
  • Muraoka-Cook RS, Sandahl MA, Strunk KE, et al. The intracellular domain of ErbB4 induces differentiation of mammary epithelial cells. Mol Biol Cell. 2006;17(9):4118–4129. doi:10.1091/mbc.e06-02-0101.
  • Long W, Wagner KU, Lloyd KC, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130(21):5257–5268. doi:10.1242/dev.00715.
  • Jones FE, Welte T, Fu XY, et al. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol. 1999;147(1):77–88. doi:10.1083/jcb.147.1.77.
  • Tidcombe H, Jackson-Fisher A, Mathers K, et al. Neural and mammary gland defects in ErbB4 knockout mice genetically rescued from embryonic lethality. Proc Natl Acad Sci USA. 2003;100(14):8281–8286. doi:10.1073/pnas.1436402100.
  • Muraoka-Cook RS, Sandahl MA, Strunk KE, et al. ErbB4 splice variants Cyt1 and Cyt2 differ by 16 amino acids and exert opposing effects on the mammary epithelium in vivo. Mol Cell Biol. 2009;29(18):4935–4948. doi:10.1128/MCB.01705-08.
  • Williams MM, Vaught DB, Joly MM, et al. ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res. 2017;19(1):105. doi:10.1186/s13058-017-0893-7.
  • Shams A, Binothman N, Boudreault J, et al. Prolactin receptor-driven combined luminal and epithelial differentiation in breast cancer restricts plasticity, stemness, tumorigenesis and metastasis. Oncogenesis. 2021;10(1):10. doi:10.1038/s41389-020-00297-5.
  • Shan L, Zhang R, Zhang W, et al. Image-based evaluation of the molecular events underlying HC11 mammary epithelial cell differentiation. Anal Biochem. 2008;382(2):122–128. doi:10.1016/j.ab.2008.08.004.
  • Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274. doi:10.1016/j.cell.2007.06.009.
  • Maroulakou IG, Oemler W, Naber SP, et al. Distinct roles of the three Akt isoforms in lactogenic differentiation and involution. J Cell Physiol. 2008;217(2):468–477. doi:10.1002/jcp.21518.
  • Cerrito MG, Galbaugh T, Wang W, et al. Dominant negative Ras enhances lactogenic hormone-induced differentiation by blocking activation of the Raf-Mek-Erk signal transduction pathway. J Cell Physiol. 2004;201(2):244–258. doi:10.1002/jcp.20077.
  • Galbaugh T, Cerrito MG, Jose CC, et al. EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol. 2006;7(1):34. doi:10.1186/1471-2121-7-34.
  • Jankiewicz M, Groner B, Desrivières S. Mammalian target of rapamycin regulates the growth of mammary epithelial cells through the inhibitor of deoxyribonucleic acid binding Id1 and their functional differentiation through Id2. Mol Endocrinol. 2006;20(10):2369–2381. doi:10.1210/me.2006-0071.
  • Shan L, Yu M, Qiu C, et al. Id4 regulates mammary epithelial cell growth and differentiation and is overexpressed in rat mammary gland carcinomas. Am J Pathol. 2003;163(6):2495–2502. doi:10.1016/S0002-9440(10)63604-8.
  • Desprez PY, Hara E, Bissell MJ, et al. Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1. Mol Cell Biol. 1995;15(6):3398–3404. doi:10.1128/MCB.15.6.3398.
  • Wang B, Shi L, Men J, et al. Controlled synchronization of prolactin/STAT5 and AKT1/mTOR in bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim. 2020;56(3):243–252. doi:10.1007/s11626-020-00432-x.
  • Jeon SW, Conejos JRV, Lee JS, et al. D-Methionine and 2-hydroxy-4-methylthiobutanoic acid alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells. J Anim Sci Technol. 2022;64(3):481–499. doi:10.5187/jast.2022.e37.
  • Park DS, Lee H, Riedel C, et al. Prolactin negatively regulates caveolin-1 gene expression in the mammary gland during lactation, via a Ras-dependent mechanism. J Biol Chem. 2001;276(51):48389–48397. doi:10.1074/jbc.M108210200.
  • Howe LR, Watanabe O, Leonard J, et al. Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 2003;63(8):1906–1913.
  • Itoh S, Itoh F, Goumans MJ, et al. Signaling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem. 2000;267(24):6954–6967. doi:10.1046/j.1432-1327.2000.01828.x.
  • Perotti C, Karayazi O, Moffat S, et al. The bone morphogenetic protein receptor-1A pathway is required for lactogenic differentiation of mammary epithelial cells in vitro. In Vitro Cell Dev Biol Anim. 2012;48(6):377–384. doi:10.1007/s11626-012-9522-z.
  • Kirn-Safran CB, Julian J, Fongemie JE, et al. Changes in the cytologic distribution of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) during in vivo and in vitro mouse mammary epithelial cell expression and differentiation. Dev Dyn. 2002;223(1):70–84. doi:10.1002/dvdy.1226.
  • Strizzi L, Mancino M, Bianco C, et al. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J Cell Physiol. 2008;216(3):824–834. doi:10.1002/jcp.21462.
  • Srinivasan K, Strickland P, Valdes A, et al. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell. 2003;4(3):371–382. doi:10.1016/s1534-5807(03)00054-6.
  • Strizzi L, Bianco C, Raafat A, et al. Netrin-1 regulates invasion and migration of mouse mammary epithelial cells overexpressing Cripto-1 in vitro and in vivo. J Cell Sci. 2005;118(Pt 20):4633–4643. doi:10.1242/jcs.02574.
  • Talhouk RS, Elble RC, Bassam R, et al. Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res. 2005;319(1):49–59. doi:10.1007/s00441-004-0915-5.
  • Zhao Y, Johansson C, Tran T, et al. Identification of a basic helix-loop-helix transcription factor expressed in mammary gland alveolar cells and required for maintenance of the differentiated state. Mol Endocrinol. 2006;20(9):2187–2198. doi:10.1210/me.2005-0214.
  • Suzuki Y, Haga S, Katoh D, et al. Chemerin is a novel regulator of lactogenesis in bovine mammary epithelial cells. Biochem Biophys Res Commun. 2015;466(3):283–288. doi:10.1016/j.bbrc.2015.08.105.
  • Xu HF, Luo J, Zhao WS, et al. Overexpression of SREBP1 (sterol regulatory element-binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci. 2016;99(1):783–795. doi:10.3168/jds.2015-9736.
  • Xu HF, Luo J, Zhang XY, et al. Activation of liver X receptor promotes fatty acid synthesis in goat mammary epithelial cells via modulation of SREBP1 expression. J Dairy Sci. 2019;102(4):3544–3555. doi:10.3168/jds.2018-15538.
  • Kang Y, Hengbo S, Jun L, et al. PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. J Cell Biochem. 2015;116(1):192–201. doi:10.1002/jcb.24958.
  • Shi HB, Yu K, Luo J, et al. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells. J Dairy Sci. 2015;98(10):6954–6964. doi:10.3168/jds.2015-9452.
  • Wittlin S, Sutherland KD, Visvader JE, et al. Identification of Taxreb107 as a lactogenic hormone responsive gene in mammary epithelial cells. Biochim Biophys Acta. 2003;1642(3):139–147. doi:10.1016/s0167-4889(03)00121-6.
  • Dwivedi A, Padala C, Kumari A, et al. Hematopoietic PBX-interacting protein is a novel regulator of mammary epithelial cell differentiation. Febs J. 2022;289(6):1575–1590. doi:10.1111/febs.16242.
  • Lochrie JD, Phillips K, Tonner E, et al. Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol. 2006;207(2):471–479. doi:10.1002/jcp.20587.
  • Sapi E, Flick MB, Rodoy S, et al. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. J Soc Gynecol Investig. 1998;5(2):94–101. doi:10.1177/107155769800500208.
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–529. doi:10.1038/nrm2199.
  • Mori K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell. 2000;101(5):451–454. doi:10.1016/s0092-8674(00)80855-7.
  • Yonekura S, Tsuchiya M, Tokutake Y, et al. The unfolded protein response is involved in both differentiation and apoptosis of bovine mammary epithelial cells. J Dairy Sci. 2018;101(4):3568–3578. doi:10.3168/jds.2017-13718.
  • Tsuchiya M, Koizumi Y, Hayashi S, et al. The role of unfolded protein response in differentiation of mammary epithelial cells. Biochem Biophys Res Commun. 2017;484(4):903–908. doi:10.1016/j.bbrc.2017.02.042.
  • Zinszner H, Kuroda X, Wang N, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982–995. doi:10.1101/gad.12.7.982.
  • Liu W, Capuco AV, Romagnolo DF. Expression of cytosolic NADP+-dependent isocitrate dehydrogenase in bovine mammary epithelium: modulation by regulators of differentiation and metabolic effectors. Exp Biol Med. 2006;231(5):599–610. doi:10.1177/153537020623100515.
  • Seagroves TN, Krnacik S, Raught B, et al. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998;12(12):1917–1928. doi:10.1101/gad.12.12.1917.
  • Anand V, Jaswal S, Singh S, et al. Functional characterization of mammary gland protein-40, a chitinase-like glycoprotein expressed during mammary gland apoptosis. Apoptosis. 2016;21(2):209–224. doi:10.1007/s10495-015-1196-z.
  • Marte BM, Jeschke M, Graus-Porta D, et al. Neu differentiation factor/heregulin modulates growth and differentiation of HC11 mammary epithelial cells. Mol Endocrinol. 1995;9:14–23.
  • Hynes NE, Taverna D, Harwerth IM, et al. Epidermal growth factor receptor, but not c-erbB-2, activation prevents lactogenic hormone induction of the β-casein gene in mouse mammary epithelial cells. Mol Cell Biol. 1990;10(8):4027–4034. doi:10.1128/mcb.10.8.4027-4034.1990.
  • Happ B, Hynes NE, Groner B. Ha-ras and v-raf oncogenes, but not int-2 and c-myc, interfere with the lactogenic hormone dependent activation of the mammary gland specific transcription factor. Cell Growth Differ. 1993;4(1):9–15.
  • Horsch K, Schaller MD, Hynes NE. The protein tyrosine phosphatase-PEST is implicated in the negative regulation of epidermal growth factor on PRL signaling in mammary epithelial cells. Mol Endocrinol. 2001;15(12):2182–2196. doi:10.1210/mend.15.12.0743.
  • Jäger R, Pappas L, Schorle H. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes. BMC Res Notes. 2011;4(1):345. doi:10.1186/1756-0500-4-345.
  • Hardie DG. AMP-activated protein kinase – an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–1908. doi:10.1101/gad.17420111.
  • Huang J, Guesthier MA, Burgos SA. AMP-activated protein kinase controls lipid and lactose synthesis in bovine mammary epithelial cells. J Dairy Sci. 2020;103(1):340–351. doi:10.3168/jds.2019-16343.
  • Burgos SA, Kim JJ, Dai M, et al. Energy depletion of bovine mammary epithelial cells activates AMPK and suppresses protein synthesis through inhibition of mTORC1 signaling. Horm Metab Res. 2013;45:183–189.
  • Cai J, Zhao FQ, Liu JX, et al. Local mammary glucose supply regulates availability and intracellular metabolic pathways of glucose in the mammary gland of lactating dairy goats under malnutrition of energy. Front Physiol. 2018;9:1467. doi:10.3389/fphys.2018.01467.
  • Shi H, Jiang N, Wei L, et al. AMPK-ChREBP axis mediates de novo milk fatty acid synthesis promoted by glucose in the mammary gland of lactating goats. Anim Nutr. 2022;10:234–242. doi:10.1016/j.aninu.2022.05.003.
  • Zong Y, Zhang CS, Li M, et al. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 2019;29(6):460–473. doi:10.1038/s41422-019-0163-6.
  • Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for chrebp: established roles and future goals. Cell Metab. 2017;26(2):324e41–324341. doi:10.1016/j.cmet.2017.07.004.
  • Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, et al. Integrin signalling adaptors: not only figurants in the cancer story. Nat Rev Cancer. 2010;10(12):858–870. doi:10.1038/nrc2967.
  • Tornillo G, Elia AR, Castellano I, et al. p130Cas alters the differentiation potential of mammary luminal progenitors by deregulating c-Kit activity. Stem Cells. 2013;31(7):1422–1433. doi:10.1002/stem.1403.
  • Li M, Li Q, Gao X. Expression and function of leptin and its receptor in dairy goat mammary gland. J Dairy Res. 2010;77(2):213–219. doi:10.1017/S0022029910000063.
  • Yonekura S, Sakamoto K, Komatsu T, et al. Growth hormone and lactogenic hormones can reduce the leptin mRNA expression in bovine mammary epithelial cells. Domest Anim Endocrinol. 2006;31(1):88–96. doi:10.1016/j.domaniend.2005.09.002.
  • Gratacós FM, Brewer G. The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2010;1(3):457–473. doi:10.1002/wrna.26.
  • Nagaoka K, Tanaka T, Imakawa K, et al. Involvement of RNA binding proteins AUF1 in mammary gland differentiation. Exp Cell Res. 2007;313(13):2937–2945. doi:10.1016/j.yexcr.2007.04.017.
  • Desrivières S, Prinz T, Castro-Palomino LN, et al. Comparative proteomic analysis of proliferating and functionally differentiated mammary epithelial cells. Mol Cell Proteomics. 2003;2(10):1039–1054. doi:10.1074/mcp.M300032-MCP200.
  • Jaswal S, Anand V, Ali SA, et al. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. Faseb J. 2021;35(6):e21621.
  • Sornapudi TR, Nayak R, Guthikonda PK, et al. Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells. Sci Rep. 2018;8(1):11777. doi:10.1038/s41598-018-30122-4.
  • Wang W, Jose C, Kenney N, et al. Global expression profiling reveals regulation of CTGF/CCN2 during lactogenic differentiation. J Cell Commun Signal. 2009;3(1):43–55. doi:10.1007/s12079-009-0047-5.
  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–525. doi:10.1038/nrm2728.
  • Goud B, Liu S, Storrie B. Rab proteins as major determinants of the Golgi complex structure. Small GTPases. 2018;9(1–2):66–75. doi:10.1080/21541248.2017.1384087.
  • Cayre S, Faraldo MM, Bardin S, et al. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development. 2020;147(19):190744. doi:10.1242/dev.190744.
  • Kitayama M, Mizutani K, Maruoka M, et al. A novel nectin-mediated cell adhesion apparatus that is implicated in prolactin receptor signaling for mammary gland development. J Biol Chem. 2016;291(11):5817–5831. doi:10.1074/jbc.M115.685917.
  • Shan L, Rouhani SA, Schut HA. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) modulates lactogenic hormone-mediated differentiation and gene expression in HC11 mouse mammary epithelial cells. Cell Growth Differ. 2001;12(12):649–656.
  • Zhang Z, Wei Q, Zeng Y, et al. Effect of Hordei Fructus Germinatus on differential gene expression in the prolactin signaling pathway in the mammary gland of lactating rats. J Ethnopharmacol. 2021;268:113589. doi:10.1016/j.jep.2020.113589.
  • Abate-Shen C. Deregulated homeobox gene expression in cancer: Cause or consequence? Nat Rev Cancer. 2002;2(10):777–785. doi:10.1038/nrc907.
  • Lewis MT. Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res. 2000;2(3):158–169. doi:10.1186/bcr49.
  • Chen H, Sukumar S. Role of homeobox genes in normal mammary gland development and breast tumorigenesis. J Mammary Gland Biol Neoplasia. 2003;8(2):159–175. doi:10.1023/a:1025996707117.
  • Yasuda H, Mizuno A, Tamaoki T, et al. ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates at-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol. 1994;14(2):1395–1401. doi:10.1128/MCB.14.2.1395.
  • Li M, Fu X, Ma G, et al. Atbf1 regulates pubertal mammary gland development likely by inhibiting the pro-proliferative function of estrogen-ER signaling. PLoS One. 2012;7(12):e51283. doi:10.1371/journal.pone.0051283.
  • Dong XY, Guo P, Sun X, et al. Estrogen up-regulates ATBF1 transcription but causes its protein degradation in estrogen receptor-positive breast cancer cells. J Biol Chem. 2011;286(16):13879–13890. doi:10.1074/jbc.M110.187849.
  • Li M, Zhao D, Ma G, et al. Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Biochem Biophys Res Commun. 2013;430(1):358–363. doi:10.1016/j.bbrc.2012.11.009.
  • Casey T, Suarez-Trujillo A, Cummings S, et al. Core circadian clock transcription factor BMAL1 regulates mammary epithelial cell growth, differentiation, and milk component synthesis. PLoS One. 2021;16(8):e0248199. doi:10.1371/journal.pone.0248199.
  • Choi YS, Chakrabarti R, Escamilla-Hernandez R, et al. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol. 2009;329(2):227–241. doi:10.1016/j.ydbio.2009.02.032.
  • Lee HY, Heo YT, Lee SE, et al. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells. J Dairy Sci. 2013;96(6):3835–3839. doi:10.3168/jds.2012-5945.
  • Muroya S, Hagi T, Kimura A, et al. Lactogenic hormones alter cellular and extracellular microRNA expression in bovine mammary epithelial cell culture. J Anim Sci Biotechnol. 2016;7:8.
  • Nagaoka K, Zhang H, Watanabe G, et al. Epithelial cell differentiation regulated by MicroRNA-200a in mammary glands. PLoS One. 2013;8(6):e65127. doi:10.1371/journal.pone.0065127.
  • Chen K, Hou J, Song Y, et al. Chi-miR-3031 regulates beta-casein via the PI3K/AKT-mTOR signaling pathway in goat mammary epithelial cells (GMECs). BMC Vet Res. 2018;14(1):369. doi:10.1186/s12917-018-1695-6.
  • Lin XZ, Luo J, Zhang LP, et al. MiR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene. 2013a;521(1):15–23. doi:10.1016/j.gene.2013.03.050.
  • Lin X, Luo J, Zhang L, et al. MiR-103 controls milk fat accumulation in goat (Capra hircus) mammary gland during lactation. PLoS One. 2013b;8(11):e79258. doi:10.1371/journal.pone.0079258.
  • Wang H, Luo J, Chen Z, et al. MicroRNA-24 can control triacylglycerol synthesis in goat mammary epithelial cells by targeting the fatty acid synthase gene. J Dairy Sci. 2015;98(12):9001–9014. doi:10.3168/jds.2015-9418.
  • Amaral PP, Mattick JS. Noncoding RNA in development. Mamm Genome. 2008;19(7-8):454–492. doi:10.1007/s00335-008-9136-7.
  • Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–361. doi:10.1016/j.tcb.2011.04.001.
  • Huarte M, Rinn JL. Large non-coding RNAs: Missing links in cancer? Hum Mol Genet. 2010;19(R2):R152–R161. doi:10.1093/hmg/ddq353.
  • Shore AN, Kabotyanski EB, Roarty K, et al. Pregnancy-induced noncoding RNA (PINC) associates with polycombrepressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet. 2012;8(7):e1002840. doi:10.1371/journal.pgen.1002840.
  • Morrison B, Cutler ML. Mouse mammary epithelial cells form mammospheres during lactogenic differentiation. J Vis Exp. 2009;32:1265.
  • Gordon KE, Binas B, Chapman RS, et al. A novel cell culture model for studying differentiation and apoptosis in the mouse mammary gland. Breast Cancer Res. 2000;2(3):222–235. doi:10.1186/bcr57.
  • Jin L, Qu Y, Gomez LJ, et al. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget. 2018;9(14):11503–11514. doi:10.18632/oncotarget.23817.
  • Johnson TL, Fujimoto BA, Jiménez-Flores R, et al. Growth hormone alters lipid composition and increases the abundance of casein and lactalbumin mRNA in the MAC-T cell line. J Dairy Res. 2010;77(2):199–204. doi:10.1017/S0022029910000087.
  • Lin M, Ku AT, Dong J, et al. STAT5 confers lactogenic properties in breast tumorigenesis and restricts metastatic potential. Oncogene. 2022;41(48):5214–5222. doi:10.1038/s41388-022-02500-w.