1,091
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanoparticles Stokes radius assessment through permeability coefficient determination within a new stratified epithelium on-chip model

, , , , , , , , & ORCID Icon show all
Pages 466-475 | Received 16 Mar 2023, Accepted 25 Aug 2023, Published online: 04 Sep 2023

References

  • Balijepalli A, Sivaramakrishan V. Organs-on-chips: research and commercial perspectives. Drug Discov Today. 2017;22(2)p. :397–403. doi: 10.1016/j.drudis.2016.11.009.
  • Marx U, Walles H, Hoffmann S, et al. Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim. 2012;40(5):235–257. p. doi: 10.1177/026119291204000504.
  • Randall MJ, Jüngel A, Rimann M, et al. Advances in the biofabrication of 3D skin in vitro: healthy and pathological models. Front Bioeng Biotechnol. 2018;6:154. doi: 10.3389/fbioe.2018.00154.
  • Pruniéras M, Régnier M, Woodley D. Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol. 1983;81(1 Suppl):28s–33s.
  • Lee OJ, Ju HW, Kim JH, et al. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. J Biomed Nanotechnol. 2014;10(7):1294–1303. p. doi: 10.1166/jbn.2014.1818.
  • Ackermann K, Borgia SL, Korting HC, et al. The phenion full-thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol. 2010;23(2):105–112. p. doi: 10.1159/000265681.
  • Roberts MS, Cheruvu HS, Mangion SE, et al. Topical drug delivery: history, percutaneous absorption, and product development. Adv Drug Deliv Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929.
  • Mohammed Y, Holmes A, Kwok PCL, et al. Advances and future perspectives in epithelial drug delivery. Adv Drug Deliv Rev. 2022;186:114293. doi: 10.1016/j.addr.2022.114293.
  • Salamanca CH, Barrera-Ocampo A, Lasso JC, et al. Franz diffusion cell approach for pre-formulation characterisation of ketoprofen semi-solid dosage forms. Pharmaceutics. 2018;10(3):148. doi: 10.3390/pharmaceutics10030148.
  • van der Helm MW, van der Meer AD, Eijkel JCT, et al. Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers. 2016;4(1):e1142493. p. doi: 10.1080/21688370.2016.1142493.
  • Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. Biomicrofluidics. 2017;11(5):051502. doi: 10.1063/1.4998604.
  • Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication. Acc Chem Res. 2013;46(11)p. :2396–2406. doi: 10.1021/ar300314s.
  • Mottet G, Perez-Toralla K, Tulukcuoglu E, et al. A three dimensional thermoplastic microfluidic chip for robust cell capture and high resolution imaging. Biomicrofluidics. 2014;8(2):024109. doi: 10.1063/1.4871035.
  • Netzlaff F, Kaca M, Bock U, et al. Permeability of the reconstructed human epidermis model Episkin in comparison to various human skin preparations. Eur J Pharm Biopharm. 2007;66(1):127–134. p. doi: 10.1016/j.ejpb.2006.08.012.
  • Schimek K, Busek M, Brincker S, et al. Integrating biological vasculature into a multi-organ-chip microsystem. Lab Chip. 2013;13(18):3588–3598. p. doi: 10.1039/c3lc50217a.
  • Climent N, García I, Marradi M, et al. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine. 2018;14(2):339–351. p. doi: 10.1016/j.nano.2017.11.009.
  • Hao Y, Li Y, Song L, et al. Flash synthesis of spherical nucleic acids with record DNA density. J Am Chem Soc. 2021;143(8):3065–3069. p. doi: 10.1021/jacs.1c00568.
  • Hexig B, Nakaoka R, Tsuchiya T. Safety evaluation of surgical materials by cytotoxicity testing. J Artif Organs. 2008;11(4)p. :204–211. doi: 10.1007/s10047-008-0429-0.
  • Schoop VM, Mirancea N, Fusenig NE. Epidermal organization and differentiation of HaCaT keratinocytes in organotypic coculture with human dermal fibroblasts. J Invest Dermatol. 1999;112(3)p. :343–353. doi: 10.1046/j.1523-1747.1999.00524.x.
  • Coulombe PA, Wawersik M, Paladini RD, et al. Type I keratin 16 forms relatively unstable tetrameric assembly subunits with various type II keratin partners: biochemical basis and functional implications. Biol Bull. 1998;194(3):364–366. p. discussion 365-6. doi: 10.2307/1543114.
  • Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat. 2009;214(4):516–559. doi: 10.1111/j.1469-7580.2009.01066.x. Spicer G, et al. Universal guidelines for the conversion of proteins and dyes into functional nanothermometers. J Biophotonics. 2019;12(9):e201900044.
  • Spicer, G., Efeyan, A., Adam, P.A., Sebastian, A.T. et al., Universal guidelines for the conversion of proteins and dyes into functional nanothermometers. J Biophotonics, 2019. 12(9):1–25. p. e201900044.
  • Ota Y, Mishima S, Maurice DM. Endothelial permeability of the living cornea to fluorescein. Invest Ophthalmol. 1974;13(12):945–949.
  • Frost TS, Jiang L, Lynch RM, et al. Permeability of epithelial/endothelial barriers in transwells and microfluidic bilayer devices. Micromachines (Basel). 2019 Aug 13;10(8):533. pages 1–18, doi: 10.3390/mi10080533.
  • Hussain AA, Starita C, Hodgetts A, et al. Macromolecular diffusion characteristics of ageing human Bruch’s membrane: implications for age-related macular degeneration (AMD). Exp Eye Res. 2010;90(6):703–710. doi: 10.1016/j.exer.2010.02.013.
  • Thomas A, Wang S, Sohrabi S, et al. Characterization of vascular permeability using a biomimetic microfluidic blood vessel model. Biomicrofluidics. 2017;11(2):024102. p. doi: 10.1063/1.4977584.
  • Hsu HH, et al. A method for determination and simulation of permeability and diffusion in a 3D tissue model in a membrane insert system for multi-well plates. J Vis Exp. 2018 Feb 23;(132):56412. pages 1–12, doi: 10.3791/56412.
  • Zwolinski BJ, Eyring H, Reese CE. Diffusion and membrane permeability. J Phys Chem. 1949;53(9)p. :1426–1453. doi: 10.1021/j150474a012.
  • Dill KA, Bromberg S, Stigter D. Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience (2nd ed.). Taylor & Francis: Garland Science., 2010.
  • Landau LD, Lifshitz EM. Fluid mechanics: landau and lifshitz: course of theoretical physics. Elsevier. 2013;6, 227-237.
  • Fernandes R, Smyth NR, Muskens OL, et al. Interactions of skin with gold nanoparticles of different surface charge, shape, and functionality. Small. 2015;11(6):713–721. p. doi: 10.1002/smll.201401913.
  • Sonavane G, Tomoda K, Sano A, et al. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65(1):1–10. p. doi: 10.1016/j.colsurfb.2008.02.013.
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci U S A. 2012;109(30):11975–11980. p. doi: 10.1073/pnas.1118425109.
  • Beliciu CM, Moraru CI. Effect of solvent and temperature on the size distribution of casein micelles measured by dynamic light scattering. J Dairy Sci. 2009;92(5)p. :1829–1839. doi: 10.3168/jds.2008-1467.
  • Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8(33)p. :21585–21594. doi: 10.1021/acsami.6b06903.
  • Ren G. The effective hydrodynamic radius in the Stokes–Einstein relation is not a constant. Commun Theor Phys. 2022;74(9)p. :095603. doi: 10.1088/1572-9494/ac7130.
  • Goto Y, Calciano LJ, Fink AL. Acid-induced folding of proteins. Proc Natl Acad Sci U S A. 1990;87(2)p. :573–577. doi: 10.1073/pnas.87.2.573.