1,122
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in screening and diagnostic lab-on-chip tools for gynaecological cancers – a review

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 618-629 | Received 03 Jul 2023, Accepted 06 Oct 2023, Published online: 07 Nov 2023

References

  • Ledford LRC, Lockwood S. Scope and epidemiology of gynecologic cancers: an overview. Semin Oncol Nurs. 2019;35(2):147–150. doi: 10.1016/j.soncn.2019.03.002.
  • Fenton CL, McGauran MJ, Richards AM. Menopausal hormonal therapy in gynaecological cancers: an evidence-based approach for clinical management. Aust N Z J Obstet Gynaecol. 2020;60(6):942–945. doi: 10.1111/ajo.13237.
  • Walker S, Hyde C, Hamilton W. Risk of uterine cancer in symptomatic women in primary care: case-control study using electronic records. Br J Gen Pract. 2013;63(614):e643–e648. doi: 10.3399/bjgp13X671632.
  • Zhao S, Chen L, Zang Y, et al. Endometrial cancer in lynch syndrome. Int J Cancer. 2022;150(1):7–17. doi: 10.1002/ijc.33763.
  • Cancer Research UK. Early diagnosis data hub; 2022. Available from: https://crukcancerintelligence.shinyapps.io/EarlyDiagnosis/
  • Stewart C, Ralyea C, Lockwood S. Ovarian cancer: an integrated review. Semin Oncol Nurs. 2019;35(2):151–156. doi: 10.1016/j.soncn.2019.02.001.
  • Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstet Gynecol. 2018;131(5):909–927. doi: 10.1097/AOG.0000000000002580.
  • Penny SM. Ovarian cancer: an overview. Radiol Technol. 2020;91(6):561–575.
  • Crosbie EJ, Einstein MH, Franceschi S, et al. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–899. doi: 10.1016/S0140-6736(13)60022-7.
  • Chrysostomou AC, Stylianou DC, Constantinidou A, et al. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. 2018;10(12):729. doi: 10.3390/v10120729.
  • Basoya S, Anjankar A. Cervical cancer: early detection and prevention in reproductive age group. Cureus. 2022;14(11):e31312. doi: 10.7759/cureus.31312.
  • Shrivastava SB, Agrawal G, Mittal M, et al. Management of vaginal cancer. Rev Recent Clin Trials. 2015;10(4):289–297. doi: 10.2174/1574887110666150923112958.
  • Weinberg D, Gomez-Martinez RA. Vulvar cancer. Obstet Gynecol Clin North Am. 2019;46(1):125–135. doi: 10.1016/j.ogc.2018.09.008.
  • Low EL, Simon AE, Waller J, et al. Experience of symptoms indicative of gynaecological cancers in UK women. Br J Cancer. 2013;109(4):882–887. doi: 10.1038/bjc.2013.412.
  • McCluggage WG. Progress in the pathological arena of gynecological cancers. Int J Gynaecol Obstet. 2021;155(Suppl. 1):107–114. doi: 10.1002/ijgo.13871.
  • Lee J, Nair N. The current and future states of screening in gynecologic cancers. Obstet Gynecol Clin North Am. 2021;48(4):705–722. doi: 10.1016/j.ogc.2021.06.001.
  • Loud JT, Murphy J. Cancer screening and early detection in the 21st century. Semin Oncol Nurs. 2017;33(2):121–128. doi: 10.1016/j.soncn.2017.02.002.
  • Chauhan N. A wrong diagnosis. Indian J Cancer. 2020;57(2):212–215. doi: 10.4103/ijc.IJC_418_19.
  • Maxim LD, Niebo R, Utell MJ. Screening tests: a review with examples. Inhal Toxicol. 2014;26(13):811–828. doi: 10.3109/08958378.2014.955932.
  • Cancer Research UK. Getting diagnosed with breast cancer; 2023 [cited 2023 Sep 3].
  • Hall IJ, Tangka FKL, Sabatino SA, et al. Patterns and trends in cancer screening in the United States. Prev Chronic Dis. 2018;15:e97. doi: 10.5888/pcd15.170465.
  • Kelesidis T, Aish L, Steller MA, et al. Human papillomavirus (HPV) detection using in situ hybridization in histologic samples: correlations with cytologic changes and polymerase chain reaction HPV detection. Am J Clin Pathol. 2011;136(1):119–127. doi: 10.1309/AJCP03HUQYZMWATP.
  • Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nat Protoc. 2006;1(3):1559–1582. doi: 10.1038/nprot.2006.236.
  • Westra WH. Detection of human papillomavirus (HPV) in clinical samples: evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral Oncol. 2014;50(9):771–779; Chatzistamatiou K, Moysiadis T, Moschaki V, et al. Comparison of cytology, HPV DNA testing and HPV 16/18 genotyping alone or combined targeting to the more balanced methodology for cervical cancer screening. Gynecol Oncol. 2016;142(1):120–127; Bebyn MG, Sledzinska P, Wojtysiak J, et al. HPV RNA and DNA testing in Polish women screened for cervical cancer – a single oncological center study. Eur J Obstet Gynecol Reprod Biol. 2022;268:129–134.
  • Nash Z, Menon U. Ovarian cancer screening: current status and future directions. Best Pract Res Clin Obstet Gynaecol. 2020;65:32–45. doi: 10.1016/j.bpobgyn.2020.02.010.
  • Meyer LA, Broaddus RR, Lu KH. Endometrial cancer and lynch syndrome: clinical and pathologic considerations. Cancer Control. 2009;16(1):14–22. doi: 10.1177/107327480901600103.
  • Stephens S, Chatterjee A, Coles V, et al. The costs of treating vaginal and vulval cancer in England (2009–2015). BMC Public Health. 2020;20(1):453. doi: 10.1186/s12889-020-08545-4.
  • Vukovic A, Kuna K, Loncar Brzak B, et al. The role of salivary and serum CA125 and routine blood tests in patients with ovarian malignancies. Acta Clin Croat. 2021;60(1):55–62. doi: 10.20471/acc.2021.60.01.08.
  • Dochez V, Caillon H, Vaucel E, et al. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12(1):28. doi: 10.1186/s13048-019-0503-7.
  • Haga Y, Sakamoto K, Egami H, et al. Evaluation of serum CA125 values in healthy individuals and pregnant women. Am J Med Sci. 1986;292(1):25–29.
  • Sharma D, Vinocha A. Benign ovarian cysts with raised CA-125 levels: do we need to evaluate the fallopian tubes? J Lab Physicians. 2020;12(4):276–280. doi: 10.1055/s-0040-1722547.
  • Albers CE, Ranjit E, Sapra A, et al. Clinician beware, giant ovarian cysts are elusive and rare. Cureus. 2020;12(1):e6753. doi: 10.7759/cureus.6753.
  • Burness JV, Schroeder JM, Warren JB. Cervical colposcopy: indications and risk assessment. Am Fam Physician. 2020;102(1):39–48.
  • Zhang H, Cui J, Jia L, et al. Comparison of laparoscopy and laparotomy for endometrial cancer. Int J Gynaecol Obstet. 2012;116(3):185–191. doi: 10.1016/j.ijgo.2011.10.022.
  • Byrne B, Stack E, Gilmartin N, et al. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009;9(6):4407–4445. doi: 10.3390/s90604407.
  • Arshavsky-Graham S, Segal E. Lab-on-a-chip devices for point-of-care medical diagnostics. Adv Biochem Eng Biotechnol. 2022;179:247–265. doi: 10.1007/10_2020_127.
  • Nunna BB, Mandal D, Lee JU, et al. Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor. Nano Converg. 2019;6(1):3. doi: 10.1186/s40580-019-0173-6.
  • Zhang F, Wu L, Nie W, et al. Biomimetic microfluidic system for fast and specific detection of circulating tumor cells. Anal Chem. 2019;91(24):15726–15731. doi: 10.1021/acs.analchem.9b03920.
  • Cheng YH, Wang CH, Hsu KF, et al. Integrated microfluidic system for cell-free DNA extraction from plasma for mutant gene detection and quantification. Anal Chem. 2022;94(10):4311–4318. doi: 10.1021/acs.analchem.1c04988.
  • Zhao Z, Yang Y, Zeng Y, et al. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16(3):489–496. doi: 10.1039/c5lc01117e.
  • Sanjay ST, Fu G, Dou M, et al. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst. 2015;140(21):7062–7081; Gubala V, Harris LF, Ricco AJ, et al. Point of care diagnostics: status and future. Anal Chem. 2012;84(2):487–515.
  • Lee J, Lee SH. Lab on a chip for in situ diagnosis: from blood to point of care. Biomed Eng Lett. 2013;3(2):59–66. doi: 10.1007/s13534-013-0094-y.
  • Alva S, Bailey T, Brazg R, et al. Accuracy of a 14-day factory-calibrated continuous glucose monitoring system with advanced algorithm in pediatric and adult population with diabetes. J Diabetes Sci Technol. 2022;16(1):70–77. doi: 10.1177/1932296820958754.
  • Sukanya VS, Rath SN. Microfluidic biosensor-based devices for rapid diagnosis and effective anti-cancer therapeutic monitoring for breast cancer metastasis. Adv Exp Med Biol. 2022;1379:319–339. doi: 10.1007/978-3-031-04039-9_13.
  • Bahavarnia F, Saadati A, Hassanpour S, et al. Paper based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: a new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (muPAD). Int J Biol Macromol. 2019;138:744–754. doi: 10.1016/j.ijbiomac.2019.07.109.
  • Cetin D, Okan M, Bat E, et al. A comparative study on EpCAM antibody immobilization on gold surfaces and microfluidic channels for the detection of circulating tumor cells. Colloids Surf B Biointerfaces. 2020;188:110808. doi: 10.1016/j.colsurfb.2020.110808.
  • Chikaishi Y, Yoneda K, Ohnaga T, et al. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip’. Oncol Rep. 2017;37(1):77–82. doi: 10.3892/or.2016.5235.
  • Zhao D, Wu Z, Zhang W, et al. Substrate-induced growth of micro/nanostructured Zn(OH)F arrays for highly sensitive microfluidic fluorescence assays. ACS Appl Mater Interfaces. 2021;13(24):28462–28471. doi: 10.1021/acsami.1c04752.
  • Wang Y, Xu H, Luo J, et al. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron. 2016;83:319–326. doi: 10.1016/j.bios.2016.04.062.
  • Fan F, Shen H, Zhang G, et al. Chemiluminescence immunoassay based on microfluidic chips for alpha-fetoprotein. Clin Chim Acta. 2014;431:113–117. doi: 10.1016/j.cca.2014.02.003.
  • Wang R, Wu J, He X, et al. A sample-in-answer-out microfluidic system for the molecular diagnostics of 24 HPV genotypes using palm-sized cartridge. Micromachines. 2021;12(3):263. doi: 10.3390/mi12030263.
  • Voskuil J. How difficult is the validation of clinical biomarkers? F1000Res. 2015;4:101. doi: 10.12688/f1000research.6395.1.
  • McRae MP, Simmons GW, Wong J, et al. Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements. Lab Chip. 2015;15(20):4020–4031. doi: 10.1039/c5lc00636h.
  • Wu Y, Wang C, Wang P, et al. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian cancer screening. RSC Adv. 2021;11(14):8124–8133. doi: 10.1039/d0ra10200h.
  • Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 2012;30(21):2654–2663. doi: 10.1200/JCO.2011.39.8545.
  • Neff RT, Senter L, Salani R. BRCA mutation in ovarian cancer: testing, implications and treatment considerations. Ther Adv Med Oncol. 2017;9(8):519–531. doi: 10.1177/1758834017714993.
  • Mohd Isa S, Md Salleh A, Ismail MS, et al. ADAM9 expression in uterine cervical cancer and its associated factors. Asian Pac J Cancer Prev. 2019;20(4):1081–1087. doi: 10.31557/APJCP.2019.20.4.1081.
  • Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18(5):297–312. doi: 10.1038/s41571-020-00457-x.
  • Riethdorf S, O'Flaherty L, Hille C, et al. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev. 2018;125:102–121; Millner LM, Linder MW, Valdes R Jr. Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann Clin Lab Sci. 2013;43(3):295–304.
  • Gkountela S, Castro-Giner F, Szczerba BM, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176(1–2):98–112.e14; Pineiro R, Martinez-Pena I, Lopez-Lopez R. Relevance of CTC clusters in breast cancer metastasis. Adv Exp Med Biol. 2020;1220:93–115.
  • Njoku K, Barr CE, Hotchkies L, et al. Impact of socio-economic deprivation on endometrial cancer survival in the North West of England: a prospective database analysis. BJOG. 2021;128(7):1215–1224. doi: 10.1111/1471-0528.16618.
  • Gaa R, Menang-Ndi E, Pratapa S, et al. Versatile and rapid microfluidics-assisted antibody discovery. MAbs. 2021;13(1):1978130. doi: 10.1080/19420862.2021.1978130.
  • Kim D, Herr AE. Protein immobilization techniques for microfluidic assays. Biomicrofluidics. 2013;7(4):41501. doi: 10.1063/1.4816934.
  • Li Q, Tang D, Tang J, et al. Magneto-controlled electrochemical immunosensor for direct detection of squamous cell carcinoma antigen by using serum as supporting electrolyte. Biosens Bioelectron. 2011;27(1):153–159. doi: 10.1016/j.bios.2011.06.034.
  • Malekzad H, Zangabad PS, Mirshekari H, et al. Noble metal nanoparticles in biosensors: recent studies and applications. Nanotechnol Rev. 2017;6(3):301–329. doi: 10.1515/ntrev-2016-0014.
  • Zhu L, Sun HT, Wang S, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 2020;13(1):152. doi: 10.1186/s13045-020-00987-y.
  • Costanzo H, Gooch J, Frascione N. Nanomaterials for optical biosensors in forensic analysis. Talanta. 2023;253:123945; Hu X, Zhang Y, Ding T, et al. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8:990.
  • Liu M, Qiu JG, Ma F, et al. Advances in single-molecule fluorescent nanosensors. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(5):e1716. doi: 10.1002/wnan.1716.
  • Qian CN. At-home cancer screening: a solution for China and other developing countries with a large population and limited number of healthcare practitioners. Chin J Cancer. 2017;36(1):68. doi: 10.1186/s40880-017-0235-2.
  • Kim JH, Suh YJ, Park D, et al. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett. 2021;11(4):309–334. doi: 10.1007/s13534-021-00204-w.
  • Oppel E, Kamann S, Heinemann L, et al. Freestyle libre 2: the new isobornyl acrylate free generation. Contact Dermatitis. 2020;83(5):429–431. doi: 10.1111/cod.13638.
  • Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics. 2016;13(6):609–626. doi: 10.1080/14789450.2016.1190651.
  • Geng C, Li LC, Yan W, et al. A simple fabricated microfluidic chip for urine sample-based bladder cancer detection. J Micromech Microeng. 2018;28(11):115011. doi: 10.1088/1361-6439/aae016.
  • Lavin A, Vicente J, Holgado M, et al. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors. 2018;18(7):2038. doi: 10.3390/s18072038.
  • Shreffler J, Huecker MR. Diagnostic testing accuracy: sensitivity, specificity, predictive values and likelihood ratios. StatPearls; 2023.
  • Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29(10):3231–3239. doi: 10.1021/acs.bioconjchem.8b00592.
  • Chen K, Georgiev TZ, Sheng W, et al. Tumor cell capture patterns around aptamer-immobilized microposts in microfluidic devices. Biomicrofluidics. 2017;11(5):054110. doi: 10.1063/1.5000707.
  • Li N, Shen M, Xu Y. A portable microfluidic system for point-of-care detection of multiple protein biomarkers. Micromachines. 2021;12(4):347. doi: 10.3390/mi12040347.
  • Xie L, Cao Y, Hu F, et al. Microfluidic chip electrophoresis for simultaneous fluorometric aptasensing of alpha-fetoprotein, carbohydrate antigen 125 and carcinoembryonic antigen by applying a catalytic hairpin assembly. Mikrochim Acta. 2019;186(8):547. doi: 10.1007/s00604-019-3594-3.
  • Kohler K, Seitz H. Validation processes of protein biomarkers in serum – a cross platform comparison. Sensors. 2012;12(9):12710–12728. doi: 10.3390/s120912710.
  • Goda K, Hatta-Ohashi Y, Akiyoshi R, et al. Combining fluorescence and bioluminescence microscopy. Microsc Res Techn. 2015;78(8):715–722. doi: 10.1002/jemt.22529.
  • Nguyen HT, Thach H, Roy E, et al. Low-cost, accessible fabrication methods for microfluidics research in low-resource settings. Micromachines. 2018;9(9):461. doi: 10.3390/mi9090461.
  • Gharib G, Butun I, Muganli Z, et al. Biomedical applications of microfluidic devices: a review. Biosensors. 2022;12(11):1023. doi: 10.3390/bios12111023.