1,641
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advances in nanotechnology-assisted photodynamic therapy for neurological disorders: a comprehensive review

ORCID Icon, , , , , , , , ORCID Icon & show all
Pages 84-103 | Received 04 Aug 2023, Accepted 03 Jan 2024, Published online: 18 Jan 2024

References

  • Sun J, Kormakov S, Liu Y, et al. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules. 2018;23(7):1704. doi: 10.3390/molecules23071704.
  • Ghorbani J, Rahban D, Aghamiri S, et al. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018;27(4):293–302.
  • Paszko E, Ehrhardt C, Senge MO, et al. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn Ther. 2011;8(1):14–29. doi: 10.1016/j.pdpdt.2010.12.001.
  • Mehraban N, Freeman HS. Developments in PDT sensitizers for increased selectivity and singlet oxygen production. Materials. 2015;8(7):4421–4456. doi: 10.3390/ma8074421.
  • Zhang Y, Zhang Y, Mei Y, et al. Reactive oxygen species enlightened therapeutic strategy for oral and maxillofacial diseases—art of destruction and reconstruction. Biomedicines. 2022;10(11):2905. doi: 10.3390/biomedicines10112905.
  • Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–450. doi: 10.1039/b311900a.
  • Monro S, Colón KL, Yin H, et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem Rev. 2018;119(2):797–828. doi: 10.1021/acs.chemrev.8b00211.
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. doi: 10.1101/cshperspect.a028035.
  • Singh A, Kukreti R, Saso L, et al. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi: 10.3390/molecules24081583.
  • Finkbeiner S. Huntington’s disease. Cold Spring Harb Perspect Biol. 2011;3(6):a007476–a007476. doi: 10.1101/cshperspect.a007476.
  • Coppen EM, Roos RA. Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs. 2017;77(1):29–46. doi: 10.1007/s40265-016-0670-4.
  • Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016;15(11):1182–1194. doi: 10.1016/S1474-4422(16)30199-5.
  • Mead RJ, Shan N, Reiser HJ, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 2023;22(3):185–212. doi: 10.1038/s41573-022-00612-2.
  • Erkkinen MG, Kim M-O, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. doi: 10.1101/cshperspect.a033118.
  • Penke B, Bogár F, Paragi G, et al. Key peptides and proteins in Alzheimer’s disease. Curr Protein Pept Sci. 2019;20(6):577–599. doi: 10.2174/1389203720666190103123434.
  • Martin J. Molecular pathobiology of neurodegenerative diseases. N Engl J Med. 1999;340(25):1970–1980. doi: 10.1056/NEJM199906243402507.
  • Li M, Xu C, Ren J, et al. Photodegradation of β-sheet amyloid fibrils associated with Alzheimer’s disease by using polyoxometalates as photocatalysts. Chem Commun (Camb). 2013;49(97):11394–11396. doi: 10.1039/c3cc46772d.
  • Li C, Wang J, Liu L. Alzheimer’s therapeutic strategy: photoactive platforms for suppressing the aggregation of amyloid β protein. Front Chem. 2020;8:509. doi: 10.3389/fchem.2020.00509.
  • von O, und Halbach B, Schober A, et al. Genes, proteins, and neurotoxins involved in parkinson’s disease. Prog Neurobiol. 2004;73(3):151–177. doi: 10.1016/j.pneurobio.2004.05.002.
  • Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in tauopathy. Small GTPases. 2022;13(1):183–195. doi: 10.1080/21541248.2021.1940722.
  • Saberi S, Stauffer JE, Schulte DJ, et al. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin. 2015;33(4):855–876. doi: 10.1016/j.ncl.2015.07.012.
  • Hayden E, Cone A, Ju S. Supersaturated proteins in ALS. Proc Natl Acad Sci U S A. 2017;114(20):5065–5066. doi: 10.1073/pnas.1704885114.
  • Russ J. Systematic interaction mapping reveals novel modifiers of neurodegenerative disease processes [thesis]. zur Erlangung des akademischen Grades; 2012.
  • Gironi M, Arnò C, Comi G, et al. Multiple sclerosis and neurodegenerative diseases. In: Immune rebalancing. Amsterdam: Elsevier; 2016. p. 63–84.
  • Bahia CMCdS, Pereira JS. Obstructive sleep apnea and neurodegenerative diseases: a bidirectional relation. Dement Neuropsychol. 2015;9(1):9–15. doi: 10.1590/S1980-57642015DN91000003.
  • Bacellar IO, Tsubone TM, Pavani C, et al. Photodynamic efficiency: from molecular photochemistry to cell death. Int J Mol Sci. 2015;16(9):20523–20559. doi: 10.3390/ijms160920523.
  • Robertson CA, Evans DH, Abrahamse H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 2009;96(1):1–8. doi: 10.1016/j.jphotobiol.2009.04.001.
  • Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol. 2022;2022:7211485–7211420. doi: 10.1155/2022/7211485.
  • Uzdensky A. The biophysical aspects of photodynamic therapy. Biophysics. 2016;61(3):461–469. doi: 10.1134/S0006350916030192.
  • Juzenas P, Chen W, Sun Y-P, et al. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Deliv Rev. 2008;60(15):1600–1614. doi: 10.1016/j.addr.2008.08.004.
  • Li C, Jia P-P, Xu Y-L, et al. Photoacoustic imaging-guided chemo-photothermal combinational therapy based on emissive Pt (II) metallacycle-loaded biomimic melanin dots. Sci. China Chem. 2021;64(1):134–142. doi: 10.1007/s11426-020-9856-7.
  • Lucky SS, Soo KC, Zhang Y. Nanoparticles in photodynamic therapy. Chem Rev. 2015;115(4):1990–2042. doi: 10.1021/cr5004198.
  • Berlanda J, Kiesslich T, Engelhardt V, et al. Comparative in vitro study on the characteristics of different photosensitizers employed in PDT. J Photochem Photobiol B. 2010;100(3):173–180. doi: 10.1016/j.jphotobiol.2010.06.004.
  • Drzewiecka-Matuszek A, Rutkowska-Zbik D. Application of TD-DFT theory to studying porphyrinoid-based photosensitizers for photodynamic therapy: a review. Molecules. 2021;26(23):7176. doi: 10.3390/molecules26237176.
  • Rosa LP, Da Silva FC, Nader SA, et al. In vitro effectiveness of antimicrobial photodynamic therapy (APDT) using a 660 nm laser and malachite green dye in Staphylococcus aureus biofilms arranged on compact and cancellous bone specimens. Lasers Med Sci. 2014;29(6):1959–1965. doi: 10.1007/s10103-014-1613-5.
  • O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053–1074. doi: 10.1111/j.1751-1097.2009.00585.x.
  • Correia JH, Rodrigues JA, Pimenta S, et al. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13(9):1332. doi: 10.3390/pharmaceutics13091332.
  • Ackroyd R, Kelty C, Brown N, et al. The history of photodetection and photodynamic therapy. Photochem Photobiol. 2001;74(5):656–669. doi: 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO;2.
  • Pekkanen AM, DeWitt MR, Rylander MN. Nanoparticle enhanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol. 2014;10(9):1677–1712. doi: 10.1166/jbn.2014.1988.
  • Algorri JF, Ochoa M, Roldán-Varona P, et al. Photodynamic therapy: a compendium of latest reviews. Cancers. 2021;13(17):4447. doi: 10.3390/cancers13174447.
  • Kinsella TJ, Colussi VC, Oleinick NL, et al. Photodynamic therapy in oncology. Expert Opin Pharmacother. 2001;2(6):917–927. doi: 10.1517/14656566.2.6.917.
  • Grossman CE, Carter SL, Czupryna J, et al. Fluence rate differences in photodynamic therapy efficacy and activation of epidermal growth factor receptor after treatment of the tumor-involved murine thoracic cavity. Int J Mol Sci. 2016;17(1):101. doi: 10.3390/ijms17010101.
  • Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283–293. doi: 10.1177/153303460500400308.
  • Jia P-P, Xu L, Hu Y-X, et al. Orthogonal self-assembly of a two-step fluorescence-resonance energy transfer system with improved photosensitization efficiency and photooxidation activity. J Am Chem Soc. 2020;143(1):399–408. doi: 10.1021/jacs.0c11370.
  • Jiang P, Mizushima N. Autophagy and human diseases. Cell Res. 2014;24(1):69–79. doi: 10.1038/cr.2013.161.
  • Martinez J, Cunha LD, Park S, et al. RETRACTED ARTICLE: noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature. 2016;533(7601):115–119. doi: 10.1038/nature17950.
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi: 10.1038/nrc1071.
  • Richter AM, Cerruti-Sola S, Sternberg ED, et al. Biodistribution of tritiated benzoporphyrin derivative (3H-BPD-MA), a new potent photosensitizer, in normal and tumor-bearing mice. J Photochem Photobiol B. 1990;5(2):231–244. doi: 10.1016/1011-1344(90)80008-l.
  • Irvine DJ, Hanson MC, Rakhra K, et al. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–11146. doi: 10.1021/acs.chemrev.5b00109.
  • Gavrina AI, Shirmanova MV, Aksenova NA, et al. Photodynamic therapy of mouse tumor model using chlorin e6-polyvinyl alcohol complex. J Photochem Photobiol B. 2018;178:614–622. doi: 10.1016/j.jphotobiol.2017.12.016.
  • Gao Y-H, Lovreković V, Kussayeva A, et al. The photodynamic activities of dimethyl 131-[2-(guanidinyl) ethylamino] chlorin e6 photosensitizers in A549 tumor. Eur J Med Chem. 2019;177:144–152. doi: 10.1016/j.ejmech.2019.05.050.
  • Mae Y, Kanda T, Sugihara T, et al. Verteporfin‑photodynamic therapy is effective on gastric cancer cells. Mol Clin Oncol. 2020;13(3):10. doi: 10.3892/mco.2020.2081.
  • Banerjee S, MacRobert A, Mosse C, et al. Photodynamic therapy: inception to application in breast cancer. Breast. 2017;31:105–113. doi: 10.1016/j.breast.2016.09.016.
  • Li Z, Wang Y, Wang J, et al. Evaluation of the efficacy of 5-aminolevulinic acid photodynamic therapy for the treatment of vulvar lichen sclerosus. Photodiagnosis Photodyn Ther. 2020;29:101596. doi: 10.1016/j.pdpdt.2019.101596.
  • Hosokawa S, Takahashi G, Sugiyama K-I, et al. Porfimer sodium-mediated photodynamic therapy in patients with head and neck squamous cell carcinoma. Photodiagnosis Photodyn Ther. 2020;29:101627. doi: 10.1016/j.pdpdt.2019.101627.
  • Pino A, Fumagalli G, Bifari F, et al. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol. 2017;141:4–22. doi: 10.1016/j.bcp.2017.07.003.
  • Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci. 2010;1184(1):154–172. doi: 10.1111/j.1749-6632.2009.05108.x.
  • Mignani S, Bryszewska M, Zablocka M, et al. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci. 2017;64:23–51. doi: 10.1016/j.progpolymsci.2016.09.006.
  • Lamptey RN, Chaulagain B, Trivedi R, et al. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23(3):1851. doi: 10.3390/ijms23031851.
  • Shojai S, Haeri Rohani S-A, Moosavi-Movahedi AA, et al. Human serum albumin in neurodegeneration. Rev Neurosci. 2022;33(7):803–817. doi: 10.1515/revneuro-2021-0165.
  • Saraiva C, Praça C, Ferreira R, et al. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47. doi: 10.1016/j.jconrel.2016.05.044.
  • Giau VV, Bagyinszky E, An SSA, et al. Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr Dis Treat. 2015;11:1723–1737. doi: 10.2147/NDT.S84266.
  • Lohr KM, Frost B, Scherzer C, et al. Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model. Proc Natl Acad Sci U S A. 2020;117(52):33608–33618. doi: 10.1073/pnas.1922392117.
  • Vassilakopoulou V, Karachaliou C-E, Evangelou A, et al. Peptide-based vaccines for neurodegenerative diseases: recent endeavors and future perspectives. Vaccines. 2021;9(11):1278. doi: 10.3390/vaccines9111278.
  • Moustapha A. Neurodegenerative diseases: potential effect of glutathione. In: Glutathione system and oxidative stress in health and disease. London: IntechOpen; 2020.
  • Shaughness M, Acs D, Brabazon F, et al. Role of insulin in neurotrauma and neurodegeneration: a review. Front Neurosci. 2020;14:547175. doi: 10.3389/fnins.2020.547175.
  • Betuing S, Pikuleva IA, Castellano JM. Cholesterol and neurodegenerative diseases-pressing questions and how to address them. Front Aging Neurosci. 2022;14:948153. doi: 10.3389/fnagi.2022.948153.
  • Zou X, Zhong L, Zhu C, et al. Role of leptin in mood disorder and neurodegenerative disease. Front Neurosci. 2019;13:378. doi: 10.3389/fnins.2019.00378.
  • Kim DK, Seo MY, Lim SW, et al. Serum melanotransferrin, p97 as a biochemical marker of Alzheimer’s disease. Neuropsychopharmacology. 2001;25(1):84–90. doi: 10.1016/S0893-133X(00)00230-X.
  • Rohn S, Suttkus A, Arendt T, et al. RVG peptide as transfection reagent for specific cdk4 gene silencing in vitro and in vivo. J Drug Target. 2012;20(4):381–388. doi: 10.3109/1061186X.2012.669526.
  • Feng Z, Guo J, Liu X, et al. Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials. 2020;255:120210. doi: 10.1016/j.biomaterials.2020.120210.
  • Yang C, Fu Y, Huang C, et al. Chlorin e6 and CRISPR-Cas9 dual-loading system with deep penetration for a synergistic tumoral photodynamic-immunotherapy. Biomaterials. 2020;255:120194. doi: 10.1016/j.biomaterials.2020.120194.
  • Sheng S, Liu F, Lin L, et al. Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. J Control Release. 2020;328:631–639. doi: 10.1016/j.jconrel.2020.09.029.
  • Cho MH, Li Y, Lo P-C, et al. Fucoidan-based theranostic nanogel for enhancing imaging and photodynamic therapy of cancer. Nanomicro Lett. 2020;12(1):47. doi: 10.1007/s40820-020-0384-8.
  • Zhou S, Hu X, Xia R, et al. A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment. Angew Chem Int Ed Engl. 2020;59(51):23198–23205. doi: 10.1002/anie.202008732.
  • Um W, Park J, Ko H, et al. Visible light-induced apoptosis activatable nanoparticles of photosensitizer-DEVD-anticancer drug conjugate for targeted cancer therapy. Biomaterials. 2019;224:119494. doi: 10.1016/j.biomaterials.2019.119494.
  • Chi Y, Qin J, Li Z, et al. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz J Med Biol Res. 2020;53(5):e8457. doi: 10.1590/1414-431x20208457.
  • Huang C, Chen F, Zhang L, et al. 99mTc radiolabeled HA/TPGS-based curcumin-loaded nanoparticle for breast cancer synergistic theranostics: design, in vitro and in vivo evaluation. Int J Nanomedicine. 2020;15:2987–2998. doi: 10.2147/IJN.S242490.
  • Uthaman S, Pillarisetti S, Mathew AP, et al. Long circulating photoactivable nanomicelles with tumor localized activation and ROS triggered self-accelerating drug release for enhanced locoregional chemo-photodynamic therapy. Biomaterials. 2020;232:119702. doi: 10.1016/j.biomaterials.2019.119702.
  • Kim Y, Uthaman S, Pillarisetti S, et al. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomater. 2020;108:273–284. doi: 10.1016/j.actbio.2020.03.027.
  • Lu L, Zhao X, Fu T, et al. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials. 2020;230:119666. doi: 10.1016/j.biomaterials.2019.119666.
  • Pan Q, Tian J, Zhu H, et al. Tumor-targeting polycaprolactone nanoparticles with codelivery of paclitaxel and IR780 for combinational therapy of drug-resistant ovarian cancer. ACS Biomater Sci Eng. 2020;6(4):2175–2185. doi: 10.1021/acsbiomaterials.0c00163.
  • Ji C, Gao Q, Dong X, et al. A size‐reducible nanodrug with an aggregation‐enhanced photodynamic effect for deep chemo‐photodynamic therapy. Angew Chem Int Ed Engl. 2018;57(35):11384–11388. doi: 10.1002/anie.201807602.
  • Brynskikh AM, Zhao Y, Mosley RL, et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine. 2010;5(3):379–396. doi: 10.2217/nnm.10.7.
  • Mukherjee A, Madamsetty VS, Paul MK, et al. Recent advancements of nanomedicine towards antiangiogenic therapy in cancer. Int J Mol Sci. 2020;21(2):455. doi: 10.3390/ijms21020455.
  • Siddiqi KS, Husen A, Sohrab SS, et al. Recent status of nanomaterial fabrication and their potential applications in neurological disease management. Nanoscale Res Lett. 2018;13(1):231. doi: 10.1186/s11671-018-2638-7.
  • de Mendoza AE-H, Préat V, Mollinedo F, et al. In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma. J Control Release. 2011;156(3):421–426. doi: 10.1016/j.jconrel.2011.07.030.
  • Mukhtar M, Bilal M, Rahdar A, et al. Nanomaterials for diagnosis and treatment of brain cancer: recent updates. Chemosensors. 2020;8(4):117. doi: 10.3390/chemosensors8040117.
  • Caruso G, Raudino G, Caffo M. Patented nanomedicines for the treatment of brain tumors. Pharm Pat Anal. 2013;2(6):745–754. doi: 10.4155/ppa.13.56.
  • Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–1146. doi: 10.1126/science.284.5417.1143.
  • Shevtsov M, Multhoff G. Recent developments of magnetic nanoparticles for theranostics of brain tumor. Curr Drug Metab. 2016;17(8):737–744. doi: 10.2174/1389200217666160607232540.
  • DeCoteau W, Heckman KL, Estevez AY, et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine. 2016;12(8):2311–2320. doi: 10.1016/j.nano.2016.06.009.
  • Asil SM, Ahlawat J, Barroso GG, et al. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci. 2020;8(15):4109–4128. doi: 10.1039/d0bm00809e.
  • Shchukin DG, Sukhorukov GB. Nanoparticle synthesis in engineered organic nanoscale reactors. Adv Mater. 2004;16(8):671–682. doi: 10.1002/adma.200306466.
  • Chen Z, Zhang A, Wang X, et al. The advances of carbon nanotubes in cancer diagnostics and therapeutics. J Nanomater. 2017;2017:1–13. doi: 10.1155/2017/3418932.
  • Chouikrat R, Seve A, Vanderesse R, et al. Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem. 2012;19(6):781–792. doi: 10.2174/092986712799034897.
  • Nguyen KT, Menon JU, Jadeja PV, et al. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics. 2013;3:152.
  • Huang B, Liu X, Yang G, et al. A near-infrared organoplatinum (II) metallacycle conjugated with heptamethine cyanine for trimodal cancer therapy. CCS Chem. 2022;4(6):2090–2101. doi: 10.31635/ccschem.021.202100950.
  • Bagheri S, Muhd Julkapli N, Bee Abd Hamid S. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J. 2014;2014:1–21. doi: 10.1155/2014/727496.
  • Alkilany AM, Thompson LB, Boulos SP, et al. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2012;64(2):190–199. doi: 10.1016/j.addr.2011.03.005.
  • Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas. 2012;73(1):45–51. doi: 10.1016/j.maturitas.2011.12.015.
  • Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991. doi: 10.1016/j.bbrep.2021.100991.
  • Suthar JK, Vaidya A, Ravindran S. Toxic implications of silver nanoparticles on the Central nervous system: a systematic literature review. J Appl Toxicol. 2023;43(1):4–21. doi: 10.1002/jat.4317.
  • Migliore L, Uboldi C, Di Bucchianico S, et al. Nanomaterials and neurodegeneration. Environ Mol Mutagen. 2015;56(2):149–170. doi: 10.1002/em.21931.
  • Elle RE, et al. Dietary exposure to silver nanoparticles in Sprague–Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol. 2013;60:297–301.
  • De Grandis RA, Santos PWdSD, Oliveira KMd, et al. Novel lawsone-containing ruthenium (II) complexes: synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem. 2019;85:455–468. doi: 10.1016/j.bioorg.2019.02.010.
  • Marin S, Vlasceanu GM, Tiplea RE, et al. Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem. 2015;15(16):1596–1604. doi: 10.2174/1568026615666150414142209.
  • Palza H, Nuñez M, Bastías R, et al. In situ antimicrobial behavior of materials with copper-based additives in a hospital environment. Int J Antimicrob Agents. 2018;51(6):912–917. doi: 10.1016/j.ijantimicag.2018.02.007.
  • Hasan KF, Wang H, Mahmud S, et al. Enhancing mechanical and antibacterial performances of organic cotton materials with greenly synthesized colored silver nanoparticles. IJCST. 2022;34(4):549–565. doi: 10.1108/IJCST-05-2021-0071.
  • Cronholm P, Midander K, Karlsson HL, et al. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells. Nanotoxicology. 2011;5(2):269–281. doi: 10.3109/17435390.2010.536268.
  • Song L, Connolly M, Fernández-Cruz ML, et al. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology. 2014;8(4):383–393. doi: 10.3109/17435390.2013.790997.
  • Arya A, Gangwar A, Singh SK, et al. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade. Int J Nanomedicine. 2016;11:1159–1173. doi: 10.2147/IJN.S102096.
  • Zavvari F, Nahavandi A, Shahbazi A. Neuroprotective effects of cerium oxide nanoparticles on experimental stress-induced depression in male rats. J Chem Neuroanat. 2020;106:101799. doi: 10.1016/j.jchemneu.2020.101799.
  • Liu X, Zhang H, Zhang T, et al. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog Biomed Eng. 2021;4(1):012005. doi: 10.1088/2516-1091/ac3111.
  • Choi K-H, Nam KC, Cho G, et al. Enhanced photodynamic anticancer activities of multifunctional magnetic nanoparticles (Fe3O4) conjugated with chlorin e6 and folic acid in prostate and breast cancer cells. Nanomaterials. 2018;8(9):722. doi: 10.3390/nano8090722.
  • Lismont M, Dreesen L, Wuttke S. Metal‐organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Funct Materials. 2017;27(14):1606314. doi: 10.1002/adfm.201606314.
  • Chedid G, Yassin A. Recent trends in covalent and metal organic frameworks for biomedical applications. Nanomaterials. 2018;8(11):916. doi: 10.3390/nano8110916.
  • Pinzón-Daza ML, Campia I, Kopecka J, et al. Nanoparticle-and liposome-carried drugs: new strategies for active targeting and drug delivery across blood-brain barrier. Curr Drug Metab. 2013;14(6):625–640. doi: 10.2174/1389200211314060001.
  • Arora S, Singh J. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted VGF gene therapy. Int J Pharm. 2021;608:121095. doi: 10.1016/j.ijpharm.2021.121095.
  • Kurrikoff K, Vunk B, Langel Ü. Status update in the use of cell-penetrating peptides for the delivery of macromolecular therapeutics. Expert Opin Biol Ther. 2021;21(3):361–370. doi: 10.1080/14712598.2021.1823368.
  • Kim S, Ohulchanskyy TY, Pudavar HE, et al. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc. 2007;129(9):2669–2675. doi: 10.1021/ja0680257.
  • Sharma D, Singh J. Synthesis and characterization of fatty acid grafted chitosan polymer and their nanomicelles for nonviral gene delivery applications. Bioconjug Chem. 2017;28(11):2772–2783. doi: 10.1021/acs.bioconjchem.7b00505.
  • Xie J, Gonzalez-Carter D, Tockary TA, et al. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain. ACS Nano. 2020;14(6):6729–6742. doi: 10.1021/acsnano.9b09991.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71. doi: 10.1116/1.2815690.
  • Yang W, Thordarson P, Gooding JJ, et al. Carbon nanotubes for biological and biomedical applications. Nanotechnology. 2007;18(41):412001. doi: 10.1088/0957-4484/18/41/412001.
  • Ke PC, Lamm MH. A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys. 2011;13(16):7273–7283. doi: 10.1039/c0cp02891f.
  • Spuch C, Saida O, Navarro C. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat Drug Deliv Formul. 2012;6(1):2–18. doi: 10.2174/187221112799219125.
  • Schlachetzki F, Zhang Y, Boado RJ, et al. Gene therapy of the brain: the trans-vascular approach. Neurology. 2004;62(8):1275–1281. doi: 10.1212/01.wnl.0000120551.38463.d9.
  • Pardridge WM. Molecular trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol. 2006;6(5):494–500. doi: 10.1016/j.coph.2006.06.001.
  • Mahmoudi M, Hosseinkhani H, Hosseinkhani M, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2011;111(2):253–280. doi: 10.1021/cr1001832.
  • Padmanabhan P, Kumar A, Kumar S, et al. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1–16. doi: 10.1016/j.actbio.2016.06.003.
  • Mirsadeghi S, Dinarvand R, Ghahremani MH, et al. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale. 2015;7(11):5004–5013. doi: 10.1039/c4nr06009a.
  • Mahmoudi M, Akhavan O, Ghavami M, et al. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale. 2012;4(23):7322–7325. doi: 10.1039/c2nr31657a.
  • Hegazy MAE, Maklad HM, Abd Elmonsif DA, et al. The possible role of cerium oxide (CeO2) nanoparticles in prevention of neurobehavioral and neurochemical changes in 6-hydroxydopamineinduced parkinsonian disease. Alexandria J Med. 2017;53(4):351–360. doi: 10.1016/j.ajme.2016.12.006.
  • Kaushik AC, Sahi S. Boolean network model for GPR142 against type 2 diabetes and relative dynamic change ratio analysis using systems and biological circuits approach. Syst Synth Biol. 2015;9(1-2):45–54. doi: 10.1007/s11693-015-9163-0.
  • de Paula LB, Primo FL, Tedesco AC. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev. 2017;9(5):761–773. doi: 10.1007/s12551-017-0293-3.
  • Mishchenko TA, Turubanova VD, Mitroshina EV, et al. Effect of novel porphyrazine photosensitizers on normal and tumor brain cells. J Biophotonics. 2020;13(1):e201960077. doi: 10.1002/jbio.201960077.
  • Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61(4):250–281. doi: 10.3322/caac.20114.
  • Verebová V, Beneš J, Staničová J. Biophysical characterization and anticancer activities of photosensitive phytoanthraquinones represented by hypericin and its model compounds. Molecules. 2020;25(23):5666. doi: 10.3390/molecules25235666.
  • Deda DK, Araki K. Nanotechnology, light and chemical action: an effective combination to kill cancer cells. J Braz Chem Soc. 2015;26:2448–2470. doi: 10.5935/0103-5053.20150316.
  • Gorman A, Rodgers M. Current perspectives of singlet oxygen detection in biological environments. J Photochem Photobiol B. 1992;14(3):159–176. doi: 10.1016/1011-1344(92)85095-c.
  • Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21. doi: 10.1039/b108586g.
  • Kawakami K, Takeshita F, Puri RK. Identification of distinct roles for a dileucine and a tyrosine internalization motif in the interleukin (IL)-13 binding component IL-13 receptor α2 chain. J Biol Chem. 2001;276(27):25114–25120. doi: 10.1074/jbc.M100936200.
  • Rozhkova EA, Ulasov I, Lai B, et al. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009;9(9):3337–3342. doi: 10.1021/nl901610f.
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–171. doi: 10.1038/nrc1566.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi: 10.1038/nnano.2007.387.
  • Nasir A, Khan A, Li J, et al. Nanotechnology, a tool for diagnostics and treatment of cancer. Curr Top Med Chem. 2021;21(15):1360–1376. doi: 10.2174/1568026621666210701144124.
  • Wykosky J, Gibo D, Stanton C, et al. IL-13 receptor alpha-2, EphA2, and fra-1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res. 2008;14(1):199–208. doi: 10.1158/1078-0432.CCR-07-1990.
  • Nelson JS, Liaw L-H, Orenstein A, et al. Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst. 1988;80(20):1599–1605. doi: 10.1093/jnci/80.20.1599.
  • Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;1(4):279–293. doi: 10.1016/S1572-1000(05)00007-4.
  • Kaneko S, Fujimoto S, Yamaguchi H, et al. Photodynamic therapy of malignant gliomas. In: Intracranial gliomas part III-innovative treatment modalities. Vol. 32. Basel: Karger; 2018. p. 1–13.
  • Behin A, Hoang-Xuan K, Carpentier AF, et al. Primary brain tumours in adults. Lancet. 2003;361(9354):323–331. doi: 10.1016/S0140-6736(03)12328-8.
  • Van Tellingen O, Yetkin-Arik B, De Gooijer M, et al. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1–12. doi: 10.1016/j.drup.2015.02.002.
  • Montaseri H, Kruger CA, Abrahamse H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics. 2021;13(3):296. doi: 10.3390/pharmaceutics13030296.
  • Dou Y-K, Shang Y, He X-W, et al. Preparation of a ruthenium-complex-functionalized two-photon-excited red fluorescence silicon nanoparticle composite for targeted fluorescence imaging and photodynamic therapy in vitro. ACS Appl Mater Interfaces. 2019;11(15):13954–13963. doi: 10.1021/acsami.9b00288.
  • Zhang T-T, Li W, Meng G, et al. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci. 2016;4(2):219–229. doi: 10.1039/c5bm00383k.
  • Paviolo C, Stoddart PR. Gold nanoparticles for modulating neuronal behavior. Nanomaterials. 2017;7(4):92. doi: 10.3390/nano7040092.
  • Sawicki K, Czajka M, Matysiak-Kucharek M, et al. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol Rev. 2019;8(1):175–200. doi: 10.1515/ntrev-2019-0017.
  • Aghaie T, Jazayeri MH, Manian M, et al. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J Cell Biochem. 2019;120(3):2749–2755. doi: 10.1002/jcb.27415.
  • Muheem A. Recent patents, regulatory issues, and toxicity of nanoparticles in neuronal disorders. CDM. 2021;22(4):263–279. doi: 10.2174/18755453MTEyjMzIn3.
  • Gogurla N, Kundu SC, Ray SK. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices. Nanotechnology. 2017;28(14):145202. doi: 10.1088/1361-6528/aa6144.
  • Mioshi E, Foxe D, Leslie F, et al. The impact of dementia severity on caregiver burden in frontotemporal dementia and Alzheimer disease. Alzheimer Dis Assoc Disord. 2013;27(1):68–73. doi: 10.1097/WAD.0b013e318247a0bc.
  • Takeda S, Sato N, Morishita R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci. 2014;6:171. doi: 10.3389/fnagi.2014.00171.
  • Manek E, Darvas F, Petroianu GA. Use of biodegradable, chitosan-based nanoparticles in the treatment of Alzheimer’s disease. Molecules. 2020;25(20):4866. doi: 10.3390/molecules25204866.
  • Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: an overview of biomedical applications and its preparation. J Drug Delivery Sci Technol. 2019;49:66–81. doi: 10.1016/j.jddst.2018.10.022.
  • Dos Santos Tramontin N, da Silva S, Arruda R, et al. Gold nanoparticles treatment reverses brain damage in Alzheimer’s disease model. Mol Neurobiol. 2020;57(2):926–936. doi: 10.1007/s12035-019-01780-w.
  • Hu K, Chen X, Chen W, et al. Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine. 2018;14(4):1123–1136. doi: 10.1016/j.nano.2018.01.020.
  • Yu S, Xu X, Feng J, et al. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm. 2019;560:282–293. doi: 10.1016/j.ijpharm.2019.02.012.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, et al. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–3556. doi: 10.1002/jps.24557.
  • Rabiee N, Ahmadi S, Afshari R, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther. 2021;4(3):2000076. doi: 10.1002/adtp.202000076.
  • Panza F, Seripa D, Solfrizzi V, et al. Tau aggregation inhibitors: the future of Alzheimer’s pharmacotherapy? Expert Opin Pharmacother. 2016;17(4):457–461. doi: 10.1517/14656566.2016.1146686.
  • Adnet T, Groo A-C, Picard C, et al. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment. Pharmaceutics. 2020;12(3):251. doi: 10.3390/pharmaceutics12030251.
  • Villarejo-Galende A, González-Sánchez M, Blanco-Palmero VA, et al. Non-steroidal anti-inflammatory drugs as candidates for the prevention or treatment of Alzheimer’s disease: do they still have a role? Curr Alzheimer Res. 2020;17(11):1013–1022. doi: 10.2174/1567205017666201127163018.
  • Upadhyay N, Tripathi M, Chaddha RK, et al. Development of sensitive magnetic nanoparticle assisted rapid sandwich assay (s-MARSA) to monitor Parkinson’s disease and schizophrenia pharmacotherapy. Anal Biochem. 2023;667:115082. doi: 10.1016/j.ab.2023.115082.
  • Moayeri A, Darvishi M, Amraei M. Homing of super paramagnetic iron oxide nanoparticles (SPIONs) labeled adipose-derived stem cells by magnetic attraction in a rat model of Parkinson’s disease. Int J Nanomedicine. 2020;15:1297–1308. doi: 10.2147/IJN.S238266.
  • Niu S, Zhang L-K, Zhang L, et al. Inhibition by multifunctional magnetic nanoparticles loaded with alpha-synuclein RNAi plasmid in a Parkinson’s disease model. Theranostics. 2017;7(2):344–356. doi: 10.7150/thno.16562.
  • Ouyang Y, Fadeev M, Zhang P, et al. Aptamer-functionalized Ce4+-ion-modified C-dots: peroxidase mimicking aptananozymes for the oxidation of dopamine and cytotoxic effects toward cancer cells. ACS Appl Mater Interfaces. 2022;14(50):55365–55375. doi: 10.1021/acsami.2c16199.
  • Hao C, Qu A, Xu L, et al. Chiral molecule-mediated porous Cu x O nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J Am Chem Soc. 2018;141(2):1091–1099. doi: 10.1021/jacs.8b11856.
  • Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev. 2000;33(2-3):199–227. doi: 10.1016/s0165-0173(00)00030-8.
  • Axelsen TM, Woldbye DP. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis. 2018;8(2):195–215. doi: 10.3233/JPD-181331.
  • Mandel RJ, Manfredsson FP, Foust KD, et al. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther. 2006;13(3):463–483. doi: 10.1016/j.ymthe.2005.11.009.
  • Wu H, Wang T, Bohn MC, et al. Novel magnetic hydroxyapatite nanoparticles as non‐viral vectors for the glial cell line‐derived neurotrophic factor gene. Adv Funct Materials. 2010;20(1):67–77. doi: 10.1002/adfm.200901108.
  • Pahuja R, Seth K, Shukla A, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–4871. doi: 10.1021/nn506408v.
  • Jahansooz F, Hosseinzade BE, Zarmi AH, et al. Dopamine-loaded poly (butyl cyanoacrylate) nanoparticles reverse behavioral deficits in Parkinson’s animal models. Ther Deliv. 2020;11(6):387–399. doi: 10.4155/tde-2020-0026.
  • Yemisci M, Caban S, Gursoy-Ozdemir Y, et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood—brain barrier and provide neuroprotection. J Cereb Blood Flow Metab. 2015;35(3):469–475. doi: 10.1038/jcbfm.2014.220.
  • Barcin C, Denktas AE, Lennon RJ, et al. Comparison of combination therapy of adenosine and nitroprusside with adenosine alone in the treatment of angiographic no‐reflow phenomenon. Catheter Cardiovasc Interv. 2004;61(4):484–491. doi: 10.1002/ccd.20010.
  • Honmou O, Onodera R, Sasaki M, et al. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18(5):292–297. doi: 10.1016/j.molmed.2012.02.003.
  • Zhang T, Li F, Xu Q, et al. Ferrimagnetic nanochains‐based mesenchymal stem cell engineering for highly efficient post‐stroke recovery. Adv Funct Materials. 2019;29(24):1900603. doi: 10.1002/adfm.201900603.
  • Abdelfattah MS, Badr SEA, Lotfy SA, et al. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox Res. 2020;37(1):77–92. doi: 10.1007/s12640-019-00086-y.
  • Debnath K, Pradhan N, Singh BK, et al. Poly (trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington’s disease model mouse. ACS Appl Mater Interfaces. 2017;9(28):24126–24139. doi: 10.1021/acsami.7b06510.
  • Liu B, Zhang L, Zhang Q, et al. Membrane stabilization of poly (ethylene glycol)-b-polypeptide-g-trehalose assists cryopreservation of red blood cells. ACS Appl Bio Mater. 2020;3(5):3294–3303. doi: 10.1021/acsabm.0c00247.
  • Pradhan N, Jana NR, Jana NR. Inhibition of protein aggregation by iron oxide nanoparticles conjugated with glutamine-and proline-based osmolytes. ACS Appl Nano Mater. 2018;1(3):1094–1103. doi: 10.1021/acsanm.7b00245.
  • Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomedicine. 2015;10:4919–4936. doi: 10.2147/IJN.S82310.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. vol2016;1(1):10–29. doi: 10.1002/btm2.10003.
  • McAllum EJ, Lim NK-H, Hickey JL, et al. Therapeutic effects of CuII (atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):586–590. doi: 10.3109/21678421.2013.824000.
  • Paez-Colasante X, Figueroa-Romero C, Sakowski SA, et al. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol. 2015;11(5):266–279. doi: 10.1038/nrneurol.2015.57.
  • Kim JY, Park J, Chang JY, et al. Inflammation after ischemic stroke: the role of leukocytes and glial cells. Exp Neurobiol. 2016;25(5):241–251. doi: 10.5607/en.2016.25.5.241.
  • Dhall A, Self W. Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants. 2018;7(8):97. doi: 10.3390/antiox7080097.
  • Park K, Park J, Lee H, et al. Toxicity and tissue distribution of cerium oxide nanoparticles in rats by two different routes: single intravenous injection and single oral administration. Arch Pharm Res. 2018;41(11):1108–1116. doi: 10.1007/s12272-018-1074-7.
  • Calixto GMF, Bernegossi J, De Freitas LM, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342. doi: 10.3390/molecules21030342.
  • Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials. 2018;156:217–237. doi: 10.1016/j.biomaterials.2017.10.024.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):e10143. doi: 10.1002/btm2.10143.
  • Foggiato AA, Silva DF, Castro RCFR. Effect of photodynamic therapy on surface decontamination in clinical orthodontic instruments. Photodiagnosis Photodyn Ther. 2018;24:123–128. doi: 10.1016/j.pdpdt.2018.09.003.