455
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Three musketeers of PDA-based MRI contrasting and therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 321-333 | Received 04 Mar 2024, Accepted 13 May 2024, Published online: 25 May 2024

References

  • Sur S, Rathore A, Dave V, et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct Nano Objects. 2019;20:100397. doi: 10.1016/j.nanoso.2019.100397.
  • Indoria S, Singh V, Hsieh M-F. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314. doi: 10.1016/j.ijpharm.2020.119314.
  • Li L, Fu J, Wang X, et al. Biomimetic “nanoplatelets” as a targeted drug delivery platform for breast cancer theranostics. ACS Appl Mater Interfaces. 2021;13(3):3605–3621. doi: 10.1021/acsami.0c19259.
  • Shi Y, Liu M, Deng F, et al. Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview. J Mater Chem B. 2017;5(2):194–206. doi: 10.1039/C6TB02249A.
  • Tian L, Li X, Ji H, et al. Melanin-like nanoparticles: advances in surface modification and tumour photothermal therapy. J Nanobiotechnol. 2022;20(1):485. doi: 10.1186/s12951-022-01698-x.
  • Aguilar‐Ferrer D, Vasileiadis T, Iatsunskyi I, et al. Understanding the photothermal and photocatalytic mechanism of polydopamine coated gold nanorods. Adv Funct Mater. 2023;33:1–14. doi: 10.1002/adfm.202304208.
  • Beik J, Abed Z, Ghoreishi FS, et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J Control Release. 2016;235:205–221. doi: 10.1016/j.jconrel.2016.05.062.
  • Pérez-Hernández M. Mechanisms of cell death induced by optical hyperthermia. In: R. M. Fratila and J. M. De La Fuente (editors). Nanomaterials for magnetic and optical hyperthermia applications. Elsevier; 2019. p. 201–228.
  • Su J, Sun H, Meng Q, et al. Bioinspired nanoparticles with NIR‐controlled drug release for synergetic chemophotothermal therapy of metastatic breast cancer. Adv Funct Mater. 2016;26(41):7495–7506. doi: 10.1002/adfm.201603381.
  • Phung DC, Nguyen HT, Phuong Tran TT, et al. Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J Pharm Investig. 2019;49(5):519–526. doi: 10.1007/s40005-019-00431-5.
  • Shen J, Lin M, Ding M, et al. Tumor immunosuppressive microenvironment modulating hydrogels for second near-infrared photothermal-immunotherapy of cancer. Mater Today Bio. 2022;16:100416. doi: 10.1016/j.mtbio.2022.100416.
  • Zhang G, Chen X, Chen X, et al. Enhanced immunotherapy based on efficient tumor inhibition the synergistic click reaction-mediated chemotherapy and photothermal therapy for efficient tumor inhibition. Biol Med Chem. 2023:1–15. doi: 10.26434/chemrxiv-2023-nl43g.
  • Overchuk M, Weersink RA, Wilson BC, et al. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 2023;17(9):7979–8003. doi: 10.1021/acsnano.3c00891.
  • Bienia A, Wiecheć-Cudak O, Murzyn AA, et al. Photodynamic therapy and hyperthermia in combination treatment—neglected forces in the fight against cancer. Pharmaceutics. 2021;13(8):1147. doi: 10.3390/pharmaceutics13081147.
  • Gao S, Wang G, Qin Z, et al. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy. Biomaterials. 2017;112:324–335. doi: 10.1016/j.biomaterials.2016.10.030.
  • Zhang Z, Xu W, Xiao P, et al. Molecular engineering of high-performance aggregation-Induced emission photosensitizers to boost cancer theranostics mediated by acid-triggered nucleus-targeted nanovectors. ACS Nano. 2021;15(6):10689–10699. doi: 10.1021/acsnano.1c03700.
  • Kim D, Jeong YY, Jon S. A drug-loaded aptamer–gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–3696. doi: 10.1021/nn901877h.
  • Yang C, Guo C, Guo W, et al. Multifunctional bismuth nanoparticles as theranostic agent for PA/CT imaging and NIR laser-driven photothermal therapy. ACS Appl Nano Mater. 2018;1(2):820–830. doi: 10.1021/acsanm.7b00255.
  • Yang J, Xie R, Feng L, et al. Hyperthermia and controllable free radical coenhanced synergistic therapy in hypoxia enabled by near-infrared-II light irradiation. ACS Nano. 2019;13(11):13144–13160. doi: 10.1021/acsnano.9b05985.
  • Kamkaew A, Cheng L, Goel S, et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016;8(40):26630–26637. doi: 10.1021/acsami.6b10255.
  • Chen F, Hong H, Zhang Y, et al. In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano. 2013;7(10):9027–9039. doi: 10.1021/nn403617j.
  • Lu W, Melancon MP, Xiong C, et al. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res. 2011;71(19):6116–6121. doi: 10.1158/0008-5472.CAN-10-4557.
  • Krishna V, Singh A, Sharma P, et al. Polyhydroxy fullerenes for non‐invasive cancer imaging and therapy. Small. 2010;6(20):2236–2241. doi: 10.1002/smll.201000847.
  • Fernandes DA, Fernandes DD, Malik A, et al. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. J Photochem Photobiol B. 2021;218:112110. doi: 10.1016/j.jphotobiol.2020.112110.
  • Sharma S, Zvyagin A, Roy I. Theranostic applications of nanoparticle-mediated photoactivated therapies. J Nanotheranost. 2021;2(3):131–156. doi: 10.3390/jnt2030009.
  • Lee HJ, Liu Y, Zhao J, et al. In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging. J Control Release. 2013;172(1):152–158. doi: 10.1016/j.jconrel.2013.07.020.
  • Srinivasan S, Dasgupta A, Chatterjee A, et al. The promise of magnetic resonance imaging in radiation oncology practice in the management of brain, prostate, and GI malignancies. JCO Glob Oncol. 2022;8:e2100366. doi: 10.1200/GO.21.00366.
  • Zhao X, Shen R, Bao L, et al. Chitosan derived glycolipid nanoparticles for magnetic resonance imaging guided photodynamic therapy of cancer. Carbohydr Polym. 2020;245:116509. doi: 10.1016/j.carbpol.2020.116509.
  • Lau D, Corrie PG, Gallagher FA. MRI techniques for immunotherapy monitoring. J Immunother Cancer. 2022;10(9):e004708. doi: 10.1136/jitc-2022-004708.
  • McGowan JC. Basic principles of magnetic resonance imaging. Neuroimaging Clin N Am. 2008;18(4):623–636, x. doi: 10.1016/j.nic.2008.06.004.
  • Ju K-Y, Lee JW, Im GH, et al. Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging. Biomacromolecules. 2013;14(10):3491–3497. doi: 10.1021/bm4008138.
  • Botta M, Geraldes CFGC, Tei L. High spin Fe(III)-doped nanostructures as T1 MR imaging probes. WIREs Nanomed Nanobiotechnol. 2023;15(2):1–19. doi: 10.1002/wnan.1858.
  • Marasini R, Rayamajhi S, Moreno-Sanchez A, et al. Iron(III) chelated paramagnetic polymeric nanoparticle formulation as a next-generation T1-weighted MRI contrast agent. RSC Adv. 2021;11(51):32216–32226. doi: 10.1039/D1RA05544E.
  • Wang Z, Zou Y, Li Y, et al. Metal‐containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small. 2020;16(18):e1907042. doi: 10.1002/smll.201907042.
  • Kaufman AA, Hansen RO, Kleinberg RLK. Chapter 6: paramagnetism, diamagnetism, and ferromagnetism. In: A.A. Kaufman, R.O. Hansen, R.L.K. Kleinberg (editors), Methods in geochemistry and geophysics; Elsevier, 2008. p. 207–254.
  • Belorizky E, Fries PH. Characterising contrast agents for magnetic resonance imaging. In: P. Bertrand (editor), Electron paramagnetic resonance spectroscopy. Cham: Springer International Publishing; 2020. p. 313–349.
  • Li M, Xuan Y, Zhang W, et al. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: a review. Int J Biol Macromol. 2023;247(2023):125826. doi: 10.1016/j.ijbiomac.2023.125826.
  • Liebscher J. Chemistry of polydopamine – scope, variation, and limitation. Eur J Org Chem. 2019;2019(31–32):4976–4994. doi: 10.1002/ejoc.201900445.
  • Zandieh M, Liu J. Metal-doped polydopamine nanoparticles for highly robust and efficient DNA adsorption and sensing. Langmuir. 2021;37(30):8953–8960. doi: 10.1021/acs.langmuir.1c00783.
  • Zandieh M, Liu J. Transition metal-mediated DNA adsorption on polydopamine nanoparticles. Langmuir. 2020;36(12):3260–3267. doi: 10.1021/acs.langmuir.0c00046.
  • Lemaster JE, Wang Z, Hariri A, et al. Gadolinium doping enhances the photoacoustic signal of synthetic melanin nanoparticles: a dual modality contrast agent for stem cell imaging. Chem Mater. 2019;31(1):251–259. doi: 10.1021/acs.chemmater.8b04333.
  • Bigaj-Józefowska MJ, Coy E, Załęski K, et al. Biomimetic theranostic nanoparticles for effective anticancer therapy and MRI imaging. J Photochem Photobiol B. 2023;249:112813. doi: 10.1016/j.jphotobiol.2023.112813.
  • Qi C, Fu L-H, Xu H, et al. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem. 2019;62(2):162–188. doi: 10.1007/s11426-018-9392-6.
  • Wang Z, Xie Y, Li Y, et al. Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry. Chem Mater. 2017;29(19):8195–8201. doi: 10.1021/acs.chemmater.7b02262.
  • Li Y, Xie Y, Wang Z, et al. Structure and function of iron-loaded synthetic melanin. ACS Nano. 2016;10(11):10186–10194. doi: 10.1021/acsnano.6b05502.
  • Wu Y, Huang Y, Tu C, et al. A mesoporous polydopamine nanoparticle enables highly efficient manganese encapsulation for enhanced MRI-guided photothermal therapy. Nanoscale. 2021;13(13):6439–6446. doi: 10.1039/D1NR00957E.
  • Chen F, Xing Y, Wang Z, et al. Nanoscale polydopamine (PDA) meets π–π interactions: an interface-directed coassembly approach for mesoporous nanoparticles. Langmuir. 2016;32(46):12119–12128. doi: 10.1021/acs.langmuir.6b03294.
  • Tran S, DeGiovanni P-J, Piel B, et al. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44. doi: 10.1186/s40169-017-0175-0.
  • Xing Y, Zhang J, Chen F, et al. Mesoporous polydopamine nanoparticles with co-delivery function for overcoming multidrug resistance via synergistic chemo-photothermal therapy. Nanoscale. 2017;9(25):8781–8790. doi: 10.1039/C7NR01857F.
  • Suneetha M, Kim H, Han SS. Doxorubicin-loaded fungal-carboxymethyl chitosan functionalized polydopamine nanoparticles for photothermal cancer therapy. Pharmaceutics. 2023;15(4):1281. doi: 10.3390/pharmaceutics15041281.
  • Wu H, Zhang T, Liu Q, et al. Polydopamine-based loaded temozolomide nanoparticles conjugated by peptide-1 for glioblastoma chemotherapy and photothermal therapy. Front Pharmacol. 2023;14:1081612. doi: 10.3389/fphar.2023.1081612.
  • Zhang L, Yang P, Guo R, et al. Multifunctional mesoporous polydopamine with hydrophobic paclitaxel for photoacoustic imaging-guided chemo-photothermal synergistic therapy. Int J Nanomedicine. 2019;14:8647–8663.
  • Chen H, Chen H, Wang Y, et al. A novel self-coated polydopamine nanoparticle for synergistic photothermal-chemotherapy. Colloids Surf B Biointerfaces. 2021;200:111596. doi: 10.1016/j.colsurfb.2021.111596.
  • Dai L, Wei D, Zhang J, et al. Aptamer‐conjugated mesoporous polydopamine for docetaxel targeted delivery and synergistic photothermal therapy of prostate cancer. Cell Prolif. 2021;54(11):e13130. doi: 10.1111/cpr.13130.
  • Wang Z, Wang L, Prabhakar N, et al. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomater. 2019;86:416–428. doi: 10.1016/j.actbio.2019.01.002.
  • Wang L, He Y, He T, et al. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials. 2020;255:120208. doi: 10.1016/j.biomaterials.2020.120208.
  • Mu X, Zhang F, Kong C, et al. EGFR-targeted delivery of DOX-loaded Fe3O4@polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. Int J Nanomedicine. 2017;12:2899–2911. doi: 10.2147/IJN.S131418.
  • Liu J, Yu X, Braucht A, et al. N-cadherin targeted melanin nanoparticles reverse the endothelial–mesenchymal transition in vascular endothelial cells to potentially slow the progression of atherosclerosis and cancer. ACS Nano. 2024;18(11):8229–8247. doi: 10.1021/acsnano.3c12281.
  • Liu J, Kang L, Smith S, et al. Transmembrane MUC18 targeted polydopamine nanoparticles and a mild photothermal effect synergistically disrupt actin cytoskeleton and migration of cancer cells. Nano Lett. 2021;21(22):9609–9618. doi: 10.1021/acs.nanolett.1c03377.
  • Liu G, Zhou N, Cheng L, et al. “Four-in-one” versatile nanoplatforms for targeted dual chemo and photothermal synergistic cancer therapy. Pharmaceutics. 2019;11(10):507. doi: 10.3390/pharmaceutics11100507.
  • Cao H, Jiang B, Yang Y, et al. Cell membrane covered polydopamine nanoparticles with two-photon absorption for precise photothermal therapy of cancer. J Colloid Interface Sci. 2021;604:596–603. doi: 10.1016/j.jcis.2021.07.004.
  • Pellico J, Ellis CM, Davis JJ. Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2019;2019:1845637. doi: 10.1155/2019/1845637.
  • Rohrer M, Bauer H, Mintorovitch J, et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40(11):715–724. doi: 10.1097/01.rli.0000184756.66360.d3.
  • Wang K, An L, Tian Q, et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T1–T2 contrast agent for magnetic resonance imaging. RSC Adv. 2018;8(47):26764–26770. doi: 10.1039/C8RA04530E.
  • Ding X, Liu J, Li J, et al. Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy. Chem Sci. 2016;7(11):6695–6700. doi: 10.1039/c6sc01320a.
  • Wang Z, Carniato F, Xie Y, et al. High relaxivity gadolinium-polydopamine nanoparticles. Small. 2017;13(43):1–7. doi: 10.1002/smll.201701830.