621
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Actively targeted photodynamic therapy in multicellular colorectal cancer spheroids via functionalised gold nanoparticles

ORCID Icon & ORCID Icon
Pages 309-320 | Received 14 Sep 2023, Accepted 13 May 2024, Published online: 23 May 2024

References

  • Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174. doi: 10.1016/j.tranon.2021.101174.
  • Gunaydin G, Gedik ME, Ayan S. Photodynamic therapy—current limitations and novel approaches. Front Chem. 2021;9:691697. doi: 10.3389/fchem.2021.691697.
  • Simelane NWN, Kruger CA, Abrahamse H. Targeted nanoparticle photodynamic diagnosis and therapy of colorectal cancer. Int J Mol Sci. 2021;22(18):9779. doi: 10.3390/ijms22189779.
  • Correia JH, Rodrigues JA, Pimenta S, et al. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13(9):1332. doi: 10.3390/pharmaceutics13091332.
  • Hodgkinson N, Kruger CA, Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol. 2017;39(10):1010428317734691. doi: 10.1177/1010428317734691.
  • Razlog R, Kruger CA, Abrahamse H. Cytotoxic effects of combinative ZnPcS4 photosensitizer photodynamic therapy (PDT) and cannabidiol (CBD) on a cervical cancer cell line. Int J Mol Sci. 2023;24(7):6151. doi: 10.3390/ijms24076151.
  • Montaseri H, Simelane NWN, Abrahamse H. Zinc phthalocyanine tetrasulfonate-loaded Ag@mSiO2 nanoparticles for active targeted photodynamic therapy of colorectal cancer. Front Nanotechnol. 2022;4:928010. doi: 10.3389/fnano.2022.928010.
  • Brozek-Pluska B, Jarota A, Kania R, et al. Zinc phthalocyanine photochemistry by Raman imaging, fluorescence spectroscopy and femtosecond spectroscopy in normal and cancerous human colon tissues and single cells. Molecules. 2020;25(11):2688. doi: 10.3390/molecules25112688.
  • Niculescu A-G, Grumezescu AM. Photodynamic therapy—an up-to-date review. Applied Sciences. 2021;11(8):3626. doi: 10.3390/app11083626.
  • Kawczyk-Krupka A, Bugaj AM, Latos W, et al. Photodynamic therapy in colorectal cancer treatment—the state of the art in preclinical research. Photodiagnosis Photodyn Ther. 2016;13:158–174. doi: 10.1016/j.pdpdt.2015.07.175.
  • Hu X, Zhang Y, Ding T, et al. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8:990. doi: 10.3389/fbioe.2020.00990.
  • Montaseri H, Kruger CA, Abrahamse H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics. 2021;13(3):3. doi: 10.3390/pharmaceutics13030296.
  • Simelane NWN, Matlou GG, Abrahamse H. Photodynamic therapy of aluminum phthalocyanine tetra sodium 2-mercaptoacetate linked to PEGylated copper–gold bimetallic nanoparticles on colon cancer cells. Int J Mol Sci. 2023;24(3):1902. doi: 10.3390/ijms24031902.
  • Naidoo C, Kruger CA, Abrahamse H. Targeted photodynamic therapy treatment of in vitro A375 metastatic melanoma cells. Oncotarget. 2019;10(58):6079–6095. doi: 10.18632/oncotarget.27221.
  • Danaee H, Kalebic T, Wyant T, et al. Consistent expression of guanylyl cyclase-C in primary and metastatic gastrointestinal cancers. PLoS One. 2017;12(12):e0189953. doi: 10.1371/journal.pone.0189953.
  • Obaid G, Chambrier I, Cook MJ, et al. Cancer targeting with bio­molecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci. 2015;14(4):737–747. doi: 10.1039/c4pp00312h.
  • Pinto B, Pacheco C, Silva P, et al. Nanomedicine internalization and penetration: why should we use spheroids? Sci Lett. 2022;1(1):1.
  • Winifred Nompumelelo Simelane N, Abrahamse H. Nanoparticle-mediated delivery systems in photodynamic therapy of colorectal cancer. Int J Mol Sci. 2021;22(22):12405. doi: 10.3390/ijms222212405.
  • Mohammad-Hadi L, MacRobert AJ, Loizidou M, et al. Photodynamic therapy in 3D cancer models and the utilisation of nanodelivery systems. Nanoscale. 2018;10(4):1570–1581. doi: 10.1039/c7nr07739d.
  • Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int. 2021;21(1):152. doi: 10.1186/s12935-021-01853-8.
  • Nkune NW, Simelane NWN, Montaseri H, et al. Photodynamic therapy-mediated immune responses in three-dimensional tumor models. Int J Mol Sci. 2021;22(23):12618. doi: 10.3390/ijms222312618.
  • Pereira PMR, Berisha N, Bhupathiraju NVSDK, et al. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One. 2017;12(5):e0177737. doi: 10.1371/journal.pone.0177737.
  • Zafari J, Zadehmodarres S, Javani Jouni F, et al. Investigation into the effect of photodynamic therapy and cisplatin on the cervical cancer cell line (A2780). J Lasers Med Sci. 2020;11(Suppl 1):S85–S91. doi: 10.34172/jlms.2020.S14.
  • Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;2016(4):pdb.prot087379. doi: 10.1101/pdb.prot087379.
  • Sardoiwala MN, Kushwaha AC, Dev A, et al. Hypericin-loaded transferrin nanoparticles induce PP2A-regulated BMI1 degradation in colorectal cancer-specific chemo-photodynamic therapy. ACS Biomater Sci Eng. 2020;6(5):3139–3153. doi: 10.1021/acsbiomaterials.9b01844.
  • Nkune NW, Kruger CA, Abrahamse H. Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol. Oncotarget. 2022;13(1):156–172. doi: 10.18632/oncotarget.28171.
  • Gierlich P, Mata AI, Donohoe C, et al. Ligand-targeted delivery of photosensitizers for cancer treatment. Molecules. 2020;25(22):5317. doi: 10.3390/molecules25225317.
  • Shirasu N, Nam SO, Kuroki M. Tumor-targeted photodynamic therapy. Anticancer Res. 2013;33(7):2823–2831.
  • Chizenga EP, Abrahamse H. Design and assembly of a nanoparticle, antibody, phthalocyanine scaffold for intracellular delivery of photosensitizer to human papillomavirus-transformed cancer cells. Artif Cells Nanomed Biotechnol. 2023;51(1):205–216. doi: 10.1080/21691401.2023.2199037.
  • Almatroudi A. Silver nanoparticles: synthesis, characterisation and biomedical applications. Open Life Sci. 2020;15(1):819–839. doi: 10.1515/biol-2020-0094.
  • Kruger CA, Abrahamse H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules. 2018;23(10):2628. doi: 10.3390/molecules23102628.
  • Saeb ATM, Alshammari AS, Al-Brahim H, et al. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Scientific World Journal. 2014;2014:e704708–9. doi: 10.1155/2014/704708.
  • Cox MC, Mendes R, Silva F, et al. Application of LDH assay for therapeutic efficacy evaluation of ex vivo tumor models. Sci Rep. 2021;11(1):18571. doi: 10.1038/s41598-021-97894-0.
  • Manoto SL, Houreld NN, Abrahamse H. Phototoxic effect of photodynamic therapy on lung cancer cells grown as a monolayer and three dimensional multicellular spheroids. Lasers Surg Med. 2013;45(3):186–194. doi: 10.1002/lsm.22121.
  • Yakavets I, Francois A, Lamy L, et al. Effect of stroma on the behavior of temoporfin-loaded lipid nanovesicles inside the stroma-rich head and neck carcinoma spheroids. J Nanobiotechnology. 2021;19(1):3. doi: 10.1186/s12951-020-00743-x.
  • Bonelli J, Ortega-Forte E, Rovira A, et al. Improving photodynamic therapy anticancer activity of a mitochondria-targeted coumarin photosensitizer using a polyurethane–polyurea hybrid nanocarrier. Biomacromolecules. 2022;23(7):2900–2913. doi: 10.1021/acs.biomac.2c00361.
  • Carver K, Ming X, Juliano RL. Multicellular tumor spheroids as a model for assessing delivery of oligonucleotides in three dimensions. Mol Ther Nucleic Acids. 2014;3:e153. doi: 10.1038/mtna.2014.5.