293
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Cell microencapsulation techniques for cancer modelling and drug discovery

ORCID Icon & ORCID Icon
Pages 345-354 | Received 15 Dec 2023, Accepted 22 May 2024, Published online: 03 Jun 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
  • Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273–286. doi: 10.1093/biostatistics/kxx069.
  • Bussard KM, Mutkus L, Stumpf K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84. doi: 10.1186/s13058-016-0740-2.
  • Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. doi: 10.3389/fmolb.2019.00160.
  • Edmondson R, Broglie JJ, Adcock AF, et al. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. ASSAY Drug Dev Technol. 2014;12(4):207–218. doi: 10.1089/adt.2014.573.
  • Huang H, Ding Y, Sun XS, et al. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One. 2013;8(3):e59482. doi: 10.1371/journal.pone.0059482.
  • Luca AC, Mersch S, Deenen R, et al. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One. 2013;8(3):e59689. doi: 10.1371/journal.pone.0059689.
  • Lagies S, Schlimpert M, Neumann S, et al. Cells grown in three-dimensional spheroids mirror in vivo metabolic response of epithelial cells. Commun Biol. 2020;3(1):1–10. doi: 10.1038/s42003-020-0973-6.
  • Szot CS, Buchanan CF, Freeman JW, et al. 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials. 2011;32(31):7905–7912. doi: 10.1016/j.biomaterials.2011.07.001.
  • Loessner D, Stok KS, Lutolf MP, et al. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. 2010;31(32):8494–8506. doi: 10.1016/j.biomaterials.2010.07.064.
  • Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–122. doi: 10.1038/nrc2544.
  • Imparato G, Urciuolo F, Netti PA. In vitro three-dimensional models in cancer research: a review. Int Mater Rev. 2015;60(6):297–311. doi: 10.1179/1743280415Y.0000000003.
  • Mak IWY, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Translat Res. 2014;6(2):114–118.
  • Smalley KSM, Lioni M, Herlyn M. Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim. 2006;42(8-9):242–247. doi: 10.1290/0604027.1.
  • Kapałczyńska M, Kolenda T, Przybyła W, et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14(4):910–919. doi: 10.5114/AOMS.2016.63743.
  • Lin R-Z, Chang H-Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 2008;3(9-10):1172–1184. doi: 10.1002/biot.200700228.
  • Thiele J, Ma Y, Bruekers SMC, et al. 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater. 2014;26(1):125–148. doi: 10.1002/adma.201302958.
  • Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater. 2018;75:11–34. doi: 10.1016/J.ACTBIO.2018.05.034.
  • Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1979;210(4472):908–910. doi: 10.1126/SCIENCE.6776628.
  • Du J, Yarema KJ. Cell microencapsulation for tissue engineering and regenerative medicine. In: J.M. Karp, W. Zhao, editors. Micro-and Nanoeng Cell Surface, vol 1. William Andrew Publishing, 2014. pp. 215–239. doi: 10.1016/B978-1-4557-3146-6.00010-6.
  • Serra M, Correia C, Malpique R, et al. Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One. 2011;6(8):e23212. doi: 10.1371/JOURNAL.PONE.0023212.
  • Malpique R, et al. Alginate encapsulation as a novel strategy for the cryopreservation of neurospheres. Tissue Eng Part C Methods. 2010;16:965–977. doi: 10.1089/TEN.TEC.2009.0660.
  • Murua A, Portero A, Orive G, et al. Cell microencapsulation technology: towards clinical application. J Controlled Release. 2008;132(2):76–83. doi: 10.1016/j.jconrel.2008.08.010.
  • Dubrot J, et al. Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunoth. 2010;59(11):1621–1631. doi: 10.1007/S00262-010-0888-Z.
  • Heidebach T, Först P, Kulozik U. Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr. 2012;52(4):291–311. doi: 10.1080/10408398.2010.499801.
  • Zhang X, Wang W, Yu W, et al. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol Progress. 2005;21(4):1289–1296. doi: 10.1021/bp050003l.
  • Oudin MJ, Weaver VM. Physical and chemical gradients in the tumor microenvironment regulate tumor cell invasion, migration, and metastasis. Cold Spring Harb Symp Quant Biol. 2016;81(1):189–205. doi: 10.1101/sqb.2016.81.030817.
  • Shannon AM, Bouchier-Hayes DJ, Condron CM, et al. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev. 2003;29(4):297–307. doi: 10.1016/S0305-7372(03)00003-3.
  • Asthana A, Kisaalita WS. Microtissue size and hypoxia in HTS with 3D cultures. Drug Discov Today. 2012;17(15-16):810–817. doi: 10.1016/j.drudis.2012.03.004.
  • Ishihara S, Haga H. Matrix stiffness contributes to cancer progression by regulating transcription factors. Cancers (Basel). 2022;14(4):1049. doi: 10.3390/cancers14041049.
  • Monteiro CF, Custódio CA, Mano JF. Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomater. 2021;134:204–214. doi: 10.1016/J.ACTBIO.2021.07.034.
  • Crooks CA, Douglas JA, Broughton RL, et al. Microencapsulation of mammalian cells in a HEMA-MMA copolymer: effects on capsule morphology and permeability. J Biomed Mater Res. 1990;24(9):1241–1262. doi: 10.1002/JBM.820240908.
  • Bhatia SR, Khattak SF, Roberts SC. Polyelectrolytes for cell encapsulation. Curr Opin Colloid Interface Sci. 2005;10(1-2):45–51. doi: 10.1016/j.cocis.2005.05.004.
  • McGuigan AP, Bruzewicz DA, Glavan A, et al. Cell encapsulation in Sub-mm sized gel modules using replica molding. PLoS One. 2008;3(5):e2258. doi: 10.1371/JOURNAL.PONE.0002258.
  • Chan ES, Lee BB, Ravindra P, et al. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J Colloid Interface Sci. 2009;338(1):63–72. doi: 10.1016/J.JCIS.2009.05.027.
  • Davarcı F, Turan D, Ozcelik B, et al. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocoll. 2017;62:119–127. doi: 10.1016/j.foodhyd.2016.06.029.
  • Costa ALR, Willerth SM, de la Torre LG, et al. Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia. Mater Today Bio. 2022;13:100221. doi: 10.1016/J.MTBIO.2022.100221.
  • D, PonceletIn. Microencapsulation: fundamentals, methods and applications. In: V. M. Blitz, Jonathan P., Gun’ko, editors. Surface chemistry in biomedical and environmental science. Dordrecht, The Netherlands: Springer, 2006. pp. 23–34. doi: 10.1007/1-4020-4741-X.
  • Manojlovic V, Djonlagic J, Obradovic B, et al. Immobilization of cells by electrostatic droplet generation: a model system for potential application in medicine. Int J Nanomedicine. 2006;1(2):163–171. p. doi: 10.2147/NANO.2006.1.2.163.
  • Heinzen C, Berger A, Marison I. Use of vibration technology for jet Break-Up for encapsulation of cells and liquids in monodisperse microcapsules. In: C. Heinzen, A. Berger, and I. Marison, editors. Fundamentals of cell immobilisation biotechnology, vol 8a. Dordrecht, The Netherlands: Springer, 2004. pp. 257–275. doi: 10.1007/978-94-017-1638-3_14.
  • Preibisch I, Niemeyer P, Yusufoglu Y, et al. Polysaccharide-Based aerogel bead production via jet cutting method. Materials 2018. 2018;11(8):1287. doi: 10.3390/ma11081287.
  • Teunou E, Poncelet D. Rotary disc atomisation for microencapsulation applications-prediction of the particle trajectories. J Food Eng. 2005;71:345–353. doi: 10.1016/j.jfoodeng.2004.10.048.
  • Leong J-Y, Lam W-H, Ho K-W, et al. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology. 2016;24:44–60. doi: 10.1016/j.partic.2015.09.004.
  • Smit T, Calitz C, Willers C, et al. Characterization of an alginate encapsulated LS180 spheroid model for anti-colorectal cancer compound screening. ACS Med Chem Lett. 2020;11(5):1014–1021. doi: 10.1021/ACSMEDCHEMLETT.0C00076/SUPPL_FILE/ML0C00076_SI_001.PDF.
  • Yeon JH, Chung SH, Baek C, et al. A simple pipetting-based method for encapsulating live cells into multi-layered hydrogel droplets. BioChip J. 2018;12(3):184–192. doi: 10.1007/s13206-018-2307-z.
  • Antunes J, Gaspar VM, Ferreira L, et al. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Acta Biomater. 2019;94:392–409. doi: 10.1016/j.actbio.2019.06.012.
  • Rios De La Rosa JM, Wubetu J, Tirelli N, et al. Colorectal tumor 3D in vitro models: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomed Phys Eng Express. 2018;4(4):045010. doi: 10.1088/2057-1976/aac1c9.
  • Ertekin Ö, Monavari M, Krüger R, et al. 3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance. Acta Biomater. 2022;142:208–220. doi: 10.1016/J.ACTBIO.2022.02.010.
  • Xu X-X, Liu C, Liu Y, et al. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model. Exp Cell Res. 2013;319(14):2135–2144. doi: 10.1016/j.yexcr.2013.05.013.
  • Schrader J, Gordon-Walker TT, Aucott RL, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192–1205. doi: 10.1002/HEP.24108.
  • Choudhury N, Meghwal M, Das K. Microencapsulation: an overview on concepts, methods, properties and applications in foods. Food Front. 2021;2(4):426–442. doi: 10.1002/FFT2.94.
  • Singh MN, Hemant KSY, Ram M, et al. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65.
  • Spyropoulosa F, Hancocks RD, Norton IT. Food-grade emulsions prepared by membrane emulsification techniques. Procedia Food Sci. 2011;1:920–926. doi: 10.1016/j.profoo.2011.09.139.
  • Pradhan S, Clary JM, Seliktar D, et al. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials. 2017;115:141–154. doi: 10.1016/j.biomaterials.2016.10.052.
  • van Vliet LD, Hollfelder F. Microfluidic droplets and their applications: diagnosis, drug screening and the discovery of therapeutic enzymes. IFMBE Proc. 2020;69:361–368. doi: 10.1007/978-981-13-5859-3_63/FIGURES/5.
  • Vladisavljević GT, Kobayashi I, Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid. 2012;13(1):151–178. doi: 10.1007/s10404-012-0948-0.
  • Shewan HM, Stokes JR. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng. 2013;119(4):781–792. doi: 10.1016/j.jfoodeng.2013.06.046.
  • Fridman IB, et al. High-throughput microfluidic 3D biomimetic model enabling quantitative description of the human breast tumor microenvironment. Acta Biomater. 2021;132:473–488. doi: 10.1016/J.A2021.06.025CTBIO.
  • Berger Fridman I, Ugolini GS, Vandelinder V, et al. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Biofabrication. 2021;13(3):035037. doi: 10.1088/1758-5090/ABDB88.
  • Wu Z, Gong Z, Ao Z, et al. Rapid microfluidic formation of uniform Patient-Derived breast tumor spheroids. ACS Appl Bio Mater. 2020;3(9):6273–6283. doi: 10.1021/acsabm.0c00768.
  • Li Y, Hai M, Zhao Y, et al. Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor. Chinese Phys B. 2018;27(12):128703. doi: 10.1088/1674-1056/27/12/128703.
  • Kingsley DM, Roberge CL, Rudkouskaya A, et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 2019;95:357–370. doi: 10.1016/j.actbio.2019.02.014.
  • Sakai S, Inamoto K, Liu Y, et al. Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity. Cancer Sci. 2012;103(3):549–554. doi: 10.1111/j.1349-7006.2011.02187.x.
  • Jun JC, Rathore A, Younas H, et al. Hypoxia-Inducible factors and cancer. Curr Sleep Med Rep. 2017;3(1):1–10. doi: 10.1007/S40675-017-0062-7.
  • Duran M, Serrano A, Nikulin A, et al. Microcapsule production by droplet microfluidics: a review from the material science approach. Mater Des. 2022;223:111230. doi: 10.1016/j.matdes.2022.111230.
  • Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces. Lab Chip. 2012;12(18):3426–3435. doi: 10.1039/C2LC40245A/.
  • Visser CW, Kamperman T, Karbaat LP, et al. In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Sci Adv. 2018;4(1):eaao1175. doi: 10.1126/SCIADV.AAO1175/SUPPL_FILE/AAO1175_SM.PDF.
  • De Lora JA, Velasquez JL, Carroll NJ, et al. Centrifugal generation of droplet-based 3D cell cultures. SLAS Technol. 2020;25(5):436–445. doi: 10.1177/2472630320915837/ATTACHMENT/578A34E8-F542-4826-9A89-971D95EBA568/MMC1-SUPPL.PDF.
  • De Lora JA, Fencl FA, Macias Gonzalez ADY, et al. Oil-Free acoustofluidic droplet generation for multicellular tumor spheroid culture. ACS Appl Bio Mater. 2019;2(9):4097–4105. doi: 10.1021/ACSABM.9B00617/ASSET/IMAGES/LARGE/MT9B00617_0005.JPEG.
  • Thakuri PS, Ham SL, Luker GD, et al. Multiparametric analysis of oncology drug screening with aqueous two-phase tumor spheroids. Mol Pharmaceutics. 2016;13(11):3724–3735. doi: 10.1021/ACS.MOLPHARMACEUT.6B00527/ASSET/IMAGES/LARGE/MP-2016-00527S_0008.JPEG.
  • Piacentini E, Dragosavac M, Giorno L. Pharmaceutical particles design by membrane emulsification: preparation methods and applications in drug delivery. Curr Pharm Des. 2018;23(2):302–318. doi: 10.2174/1381612823666161117160940.
  • Morelli S, Holdich RG, Dragosavac MM. Microparticles for cell encapsulation and colonic delivery produced by membrane emulsification. J Memb Sci. 2017;524:377–388. doi: 10.1016/j.memsci.2016.11.058.