25
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 384-398 | Received 19 Feb 2024, Accepted 10 Jun 2024, Published online: 05 Aug 2024

References

  • World Health Organization. Cancer; 2022 [cited 2023 Mar 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  • Hobbs H. Cancer: types, cause, prevention and more. In: Healthline cancer: types, causes, treatment, and prevention; 2022 [cited 2022 May 22]. Available from: healthline.com
  • Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–317. doi: 10.1038/nrc.2017.6.
  • Luke JJ, Schwartz GK. Chemotherapy in the management of ­advanced cutaneous malignant melanoma. Clin Dermatol. 2013;31(3):290–297. doi: 10.1016/j.clindermatol.2012.08.016.
  • Naidoo C, Kruger CA, Abrahamse H. Photodynamic therapy for metastatic melanoma treatment: a review. Technol Cancer Res Treat. 2018;17:1533033818791795. doi: 10.1177/1533033818791795.
  • Nasir A, Khan A, Li J, et al. Nanotechnology, a tool for diagnostics and treatment of cancer. Curr Top Med Chem. 2021;21(15):1360–1376. doi: 10.2174/1568026621666210701144124.
  • Sztandera K, Gorzkiewicz M, Dias Martins AS, et al. Noncovalent interactions with PAMAM and PPI dendrimers promote the cellular uptake and photodynamic activity of rose bengal: the role of the dendrimer structure. J Med Chem. 2021;64(21):15758–15771. doi: 10.1021/acs.jmedchem.1c01080.
  • Zhou T, Battah S, Mazzacuva F, et al. Design of bifunctional dendritic 5-aminolevulinic acid and hydroxypyridinone conjugates for photodynamic therapy. Bioconjug Chem. 2018;29(10):3411–3428. doi: 10.1021/acs.bioconjchem.8b00574.
  • Patil S, Mishra VS, Yadav N, et al. Dendrimer-functionalized nanodiamonds as safe and efficient drug carriers for cancer therapy: nucleus penetrating nanoparticles. ACS Appl Biomater. 2022;5(7):3438–3451.
  • Singh V, Sahebkar A, Kesharwani P. Poly(propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J. 2021;158:110683. doi: 10.1016/j.eurpolymj.2021.110683.
  • Xu K, Jia H, Zhu Y, et al. Cholesterol-modified dendrimers for constructing a tumor microenvironment-responsive drug delivery system. ACS Biomater Sci Eng. 2019;5(11):6072–6081. doi: 10.1021/acsbiomaterials.9b01386.
  • Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity, and biomedical applications. Materials. 2019;13(1):65. doi: 10.3390/ma13010065.
  • Bussard KM, Mutkus L, Stumpf K, et al. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016;18(1):84. doi: 10.1186/s13058-016-0740-2.
  • Pershina AG, Brikunova OY, Demin AM, et al. Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles. Nanomedicine. 2021;32:102317. doi: 10.1016/j.nano.2020.102317.
  • Alyssa Owens, Manasi Godbole, Donnette Dabydeen, Lori Medeiros, Pradyumna Phatak, Satish Kandlikar. Conference Proceedings of the Xth Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers; Conference date: 13-15 July 2020. United States of America (Virtual, online): New York City. 2020.
  • Sella T, Sklair-Levy M, Cohen M, et al. A novel functional infrared imaging system coupled with multiparametric computerized analysis for risk assessment of breast cancer. Eur Radiol. 2013;23(5):1191–1198. doi: 10.1007/s00330-012-2724-7.
  • Rössler, O., Betge, J., Harbaum, L., Mrak, K., Tschmelitsch, J. and Langner, C., 2017. Tumor size, tumor location, and antitumor inflammatory response are associated with lymph node size in colorectal cancer patients. Modern Pathology, 30(6):897–904. doi: 10.1038/modpathol.2016.227.
  • Avaritt BR, Swaan PW. Internalization and subcellular trafficking of poly-l-lysine dendrimers are impacted by the site of fluorophore conjugation. Mol Pharm. 2015;12(6):1961–1969. doi: 10.1021/mp500765e.
  • Hilgendorf KI, Leshchiner ES, Nedelcu S, et al. The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes Dev. 2013;27(9):1003–1015. doi: 10.1101/gad.211326.112.
  • Wang H, Guo M, Wei H, et al. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 2023;8(1):92. doi: 10.1038/s41392-023-01347-1.
  • Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41:D970–D976. doi: 10.1093/nar/gks937.
  • Fang J, Feng Y, Zhang Y, et al. Alkaline phosphatase-controllable and red light-activated RNA modification approach for precise tumor suppression. J Am Chem Soc. 2022;144(50):23061–23072. doi: 10.1021/jacs.2c10409.
  • Umoren SA, Solomon MM, Saji VS. Polymeric materials in corrosion inhibition: fundamentals and applications. San Diego: Elsevier; 2022.
  • Karandikar S, Mirani A, Waybhase V, et al. Nanovaccines for oral delivery—formulation strategies and challenges. In: Ecaterina Andronescu, Alexandru Grumezesc (editors), Nanostructures for oral medicine. Amsterdam: Elsevier; 2017. p. 263–293.
  • Cho T, Yoon CW, Kim J. Repetitively coupled chemical reduction and galvanic exchange as a synthesis strategy for expanding applicable number of Pt atoms in dendrimer-encapsulated Pt nanoparticles. Langmuir. 2018;34(25):7436–7444. doi: 10.1021/acs.langmuir.8b01169.
  • Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982. doi: 10.3390/molecules25173982.
  • Cojocaru F, Botezat D, Gardikiotis I, et al. Nanomaterials designed for antiviral drug delivery transport across biological barriers. Pharmaceutics. 2020;12(2):171. doi: 10.3390/pharmaceutics12020171.
  • Palmerston Mendes, L., Pan, J. & Torchilin, V.P. 2017. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 22(9):1401. doi: 10.3390/molecules22091401.
  • Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9(1):247. doi: 10.1186/1556-276X-9-247.
  • Wang H, Lin S, Wang S, et al. Folic acid enables targeting delivery of lipodiscs by circumventing IgM-mediated opsonization. Nano Lett. 2022;22(16):6516–6522. doi: 10.1021/acs.nanolett.2c01509.
  • Wang J, Li B, Qiu L, et al. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng. 2022;16(1):18. doi: 10.1186/s13036-022-00298-5.
  • Bacha K, Chemotti C, Mbakidi J, et al. Dendrimers: synthesis, encapsulation applications and specific interaction with the stratum corneum—a review. Macromol. 2023;3(2):343–370. doi: 10.3390/macromol3020022.
  • Nikzamir M, Hanifehpour Y, Akbarzadeh A, et al. Applications of dendrimers in nanomedicine and drug delivery: a review. J Inorg Organomet Polym. 2021;31(6):2246–2261. doi: 10.1007/s10904-021-01925-2.
  • Anderson RM, Yancey DF, Loussaert JA, et al. Multistep galvanic exchange synthesis yielding fully reduced Pt dendrimer-encapsulated nanoparticles. Langmuir. 2014;30(49):15009–15015. doi: 10.1021/la503956h.
  • Le, P.N., Pham, D.C., Nguyen, D.H., Tran, N.Q., Dimitrov, V., Ivanov, P., Xuan, C.N., Nguyen, H.N. & Nguyen, C.K. 2017. Poly (N-isopropylacrylamide)-functionalized dendrimer as a thermosensitive nanoplatform for delivering malloapelta B against HepG2 cancer cell proliferation. Advances in natural sciences: Nanoscience and nanotechnology, 8(2):025014. doi: 10.1088/2043-6254/aa5e32
  • Parsian M, Mutlu P, Yalcin S, et al. Half generations magnetic PAMAM dendrimers as an effective system for targeted gemcitabine delivery. Int J Pharm. 2016;515(1–2):104–113. doi: 10.1016/j.ijpharm.2016.10.015.
  • Kong L, Alves CS, Hou W, et al. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces. 2015;7(8):4833–4843. doi: 10.1021/am508760w.
  • Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B. 2020;8(6):1128–1138. doi: 10.1039/C9TB02289A.
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29. doi: 10.1002/btm2.10003.
  • Lei Q, Wang S, Hu J, et al. Stimuli-responsive “Cluster bomb” for programmed tumor therapy. ACS Nano. 2017;11(7):7201–7214. doi: 10.1021/acsnano.7b03088.
  • Sykes EA, Chen J, Zheng G, et al. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano. 2014;8(6):5696–5706. doi: 10.1021/nn500299p.
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162. doi: 10.1016/j.apsb.2019.08.003.
  • Li H, Liu J, Luo Y, et al. Intratumor performance and therapeutic efficacy of PAMAM dendrimers carried by clustered nanoparticles. Nano Lett. 2019;19(12):8947–8955. doi: 10.1021/acs.nanolett.9b03913.
  • Wang J, Mao W, Lock LL, et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano. 2015;9(7):7195–7206. doi: 10.1021/acsnano.5b02017.
  • Jeong WY, Kwon M, Choi HE, et al. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. doi: 10.1186/s40824-021-00226-6.
  • Jain KK. An overview of drug delivery systems. In: Kewal K. Jain (editor), Drug delivery systems; 2020. Springer nature: New York. p. 1–54.
  • Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015;17(6):1327–1340. doi: 10.1208/s12248-015-9814-9.
  • Li X, Chen L, Huang M, et al. Innovative strategies for photodynamic therapy against hypoxic tumor. Asian J Pharm Sci. 2023;18(1):100775. doi: 10.1016/j.ajps.2023.100775.
  • Zaid Alkilani A, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–470. doi: 10.3390/pharmaceutics7040438.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11(3):393–407. doi: 10.1517/17425247.2014.875528.
  • Ita KB. Transdermal drug delivery: progress and challenges. J Drug Deliv Sci Technol. 2014;24(3):245–250. doi: 10.1016/S1773-2247(14)50041-X.
  • Jin JF, Zhu LL, Chen M, et al. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence. 2015;9:923–942. doi: 10.2147/PPA.S87271.
  • Kafle, U., Agrawal, S. and Dash, A.K., 2022. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics 2022, 14(12):2783. doi: 10.3390/pharmaceutics14122783
  • Linker SM, Schellhaas C, Kamenik AS, et al. Lessons for oral bioavailability: how conformationally flexible cyclic peptides enter and cross lipid membranes. J Med Chem. 2023;66(4):2773–2788. doi: 10.1021/acs.jmedchem.2c01837.
  • Padhye T, Maravajjala KS, Swetha KL, et al. A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J Drug Deliv Sci Technol. 2021;61:102178. doi: 10.1016/j.jddst.2020.102178.
  • Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med. 2018;50(8):1–9. doi: 10.1038/s12276-018-0126-x.
  • Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–659. doi: 10.1007/s00018-012-1070-x.
  • Singh AK, Sharma AK, Khan I, et al. Oral drug delivery potential of dendrimers. In: Ecaterina Andronescu & Alexandru Mihai Grumezescu (editors), Nanostructures for oral medicine. Amsterdam: Elsevier; 2017. p. 231–261.
  • Abedi-Gaballu F, Dehghan G, Ghaffari M, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–190. doi: 10.1016/j.apmt.2018.05.002.
  • Opitz AW, Czymmek KJ, Wickstrom E, et al. Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM dendrimers into pancreatic cancer cells. Biochim Biophys Acta. 2013;1828(2):294–301. doi: 10.1016/j.bbamem.2012.09.016.
  • Bhatia R, Sharma A, Narang RK, et al. Recent nanocarrier approaches for targeted drug delivery in cancer therapy. Curr Mol Pharmacol. 2021;14(3):350–366. doi: 10.2174/1874467213666200730114943.
  • Yafout M, Ousaid A, Khayati Y, et al. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: a new lead for targeted pharmacological cancer treatments. Sci Afr. 2021;11:e00685. doi: 10.1016/j.sciaf.2020.e00685.
  • Shi P, Cheng Z, Zhao K, et al. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology. 2023;21(1):103. doi: 10.1186/s12951-023-01826-1.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009.
  • Attia, M.F., Anton, N., Wallyn, J., Omran, Z. & Vandamme, T.F. 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of pharmacy and pharmacology, 71(8):1185–1198. doi: 10.1111/jphp.13098.
  • Ahmad A, Khan F, Mishra RK, et al. Precision cancer nanotherapy: evolving role of multifunctional nanoparticles for cancer active targeting. J Med Chem. 2019;62(23):10475–10496. doi: 10.1021/acs.jmedchem.9b00511.
  • Stanislawska I, Liwinska W, Lyp M, et al. Recent advances in degradable hybrids of biomolecules and NGs for targeted delivery. Molecules. 2019;24(10):1873. doi: 10.3390/molecules24101873.
  • Behera A, Padhi S. Passive and active targeting strategies for the delivery of the camptothecin anticancer drug: a review. Environ Chem Lett. 2020;18(5):1557–1567. doi: 10.1007/s10311-020-01022-9.
  • Huang D, Sun L, Huang L, et al. Nanodrug delivery systems modulate tumor vessels to increase the enhanced permeability and retention effect. J Pers Med. 2021;11(2):124. doi: 10.3390/jpm11020124.
  • Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–427. doi: 10.1016/j.ejps.2012.12.006.
  • Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: implications for fibrosis and cancer. Adv Drug Deliv Rev. 2017;121:101–116. doi: 10.1016/j.addr.2017.07.010.
  • Zhang, M., Gao, S., Yang, D., Fang, Y., Lin, X., Jin, X., Liu, Y., Liu, X., Su, K. and Shi, K., 2021. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B, 11(8):2265–2285. doi: 10.1016/j.apsb.2021.03.033.
  • Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci U S A. 2018;115(45):11454–11459. doi: 10.1073/pnas.1812938115.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges, and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi: 10.1038/nrc.2016.108.
  • Zhao N, Yan L, Zhao X, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications. Chem Rev. 2018;119(3):1666–1762. doi: 10.1021/acs.chemrev.8b00401.
  • Fan Y, Tu W, Shen M, et al. Targeted tumor hypoxia dual-mode CT/MR imaging and enhanced radiation therapy using dendrimer-based nanosensitizers. Adv Funct Mater. 2020;30(13):1909285. doi: 10.1002/adfm.201909285.
  • Xiong Z, Shen M, Shi X. Dendrimer-based strategies for cancer therapy: recent advances and future perspectives. Sci China Mater. 2018;61(11):1387–1403.
  • Vidal F, Guzman L. Dendrimer nanocarriers drug action: perspective for neuronal pharmacology. Neural Regen Res. 2015;10(7):1029–1031. doi: 10.4103/1673-5374.160063.
  • Wang X, Qiu Y, Wang M, et al. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int J Nanomedicine. 2020;15:9447–9467. doi: 10.2147/IJN.S274289.
  • Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide–dendrimer bioconjugate. Int J Pharm. 2018;545(1–2):64–73. doi: 10.1016/j.ijpharm.2018.04.027.
  • Fu F, Wu Y, Zhu J, et al. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces. 2014;6(18):16416–16425. doi: 10.1021/am504849x.
  • Dey, A.D., Bigham, A., Esmaeili, Y., Ashrafizadeh, M., Moghaddam, F.D., Tan, S.C., Yousefiasl, S., Sharma, S., Maleki, A., Rabiee, N., Kumar, A.P., Thakur, V.K., Orive, G., Sharifi, E., Kumar, A. & Makvandi, P. 2022. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Seminars in cancer biology, 86396-419.
  • Zhang J, Liu D, Zhang M, et al. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells. Int J Nanomedicine. 2016;11:3677–3690. doi: 10.2147/IJN.S106418.
  • Oliveira JP, Prado AR, Keijok WJ, et al. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci Rep. 2019;9(1):13859. doi: 10.1038/s41598-019-50424-5.
  • Matai I, Sachdev A, Gopinath P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging. ACS Appl Mater Interfaces. 2015;7(21):11423–11435. doi: 10.1021/acsami.5b02095.
  • Xiao Y, Shi X. Improved tumor imaging using dendrimer-based nanoplatforms. Nanomedicine. 2019;14(19):2515–2518. doi: 10.2217/nnm-2019-0288.
  • Ding L, Lyu Z, Dhumal D, et al. Dendrimer-based magnetic resonance imaging agents for brain cancer. Sci China Mater. 2018;61(11):1420–1443. doi: 10.1007/s40843-018-9323-6.
  • Tang T, Ma X, Bian Y, et al. Composite of gadolinium-labeled dendrimer nanocluster and graphene oxide nanosheet for highly efficient liver T1-weighted imaging probe. ACS Biomater Sci Eng. 2019;5(4):1978–1986. doi: 10.1021/acsbiomaterials.8b01641.
  • Ben-Zichri S, Meltzer M, Lacham-Hartman S, et al. Synergistic activity of anticancer polyphenols embedded in amphiphilic dendrimer nanoparticles. ACS Appl Polym Mater. 2022;4(12):8913–8925. doi: 10.1021/acsapm.2c01316.
  • Sharma R, Liaw K, Sharma A, et al. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release. 2021;337:179–192. doi: 10.1016/j.jconrel.2021.07.018.
  • Bargathulla I, Ashwaq A, Sathiyaraj S, et al. Pegylated bis-indolyl polyurethane dendrimer: empty drug carrier with prominent anticancer activity. Eur Polym J. 2021;153:110491. doi: 10.1016/j.eurpolymj.2021.110491.
  • Gamage NH, Jing L, Worsham MJ, et al. Targeted theranostic approach for glioma using dendrimer-based curcumin nanoparticle. J Nanomed Nanotechnol. 2016;7(4):393. doi: 10.4172/2157-7439.1000393.
  • Chen JS, Chen J, Bhattacharjee S, et al. Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. J Nanobiotechnology. 2020;18(1):135. doi: 10.1186/s12951-020-00695-2.
  • Antignani A, Ho ECH, Bilotta MT, et al. Targeting receptors on cancer cells with protein toxins. Biomolecules. 2020;10(9):1331. doi: 10.3390/biom10091331.
  • Liu Y, Hui Y, Ran R, et al. Synergetic combinations of dual-targeting ligands for enhanced in vitro and in vivo tumor targeting. Adv Healthc Mater. 2018;7(15):e1800106. doi: 10.1002/adhm.201800106.
  • Ouyang Z, Li D, Shen M, et al. Dendrimer-based tumor-targeted systems. In: Rongqin Huang & Yi Wang (editors), New nanomaterials and techniques for tumor-targeted systems; Springer: Singapore, 2020. p. 337–369.
  • Wei P, Chen J, Hu Y, et al. Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors. Adv Healthc Mater. 2016;5(24):3203–3213. doi: 10.1002/adhm.201600923.
  • Li Y, He H, Lu W, et al. A poly(amidoamine) dendrimer-based drug carrier for delivering DOX to gliomas cells. RSC Adv. 2017;7(25):15475–15481. doi: 10.1039/C7RA00713B.
  • Xu L, Yeudall WA, Yang H. Folic acid-decorated polyamidoamine dendrimer exhibits high tumor uptake and sustained highly localized retention in solid tumors: its utility for local siRNA delivery. Acta Biomater. 2017;57:251–261. doi: 10.1016/j.actbio.2017.04.023.
  • Ouyang Z, Li D, Xiong Z, et al. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Appl Mater Interfaces. 2021;13(5):6069–6080. doi: 10.1021/acsami.0c21620.
  • Liu H, Wang H, Xu Y, et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6(9):6944–6953. doi: 10.1021/am500761x.
  • Zhou Z, Wang Y, Yan Y, et al. Dendrimer-templated ultrasmall and multifunctional photothermal agents for efficient tumor ablation. ACS Nano. 2016;10(4):4863–4872. doi: 10.1021/acsnano.6b02058.
  • Luo D, Carter KA, Miranda D, et al. Chemophototherapy: an emerging treatment option for solid tumors. Adv Sci. 2017;4(1):1600106. doi: 10.1002/advs.201600106.
  • Itoo AM, Paul M, Padaga SG, et al. Nanotherapeutic intervention in photodynamic therapy for cancer. ACS Omega. 2022;7(50):45882–45909. doi: 10.1021/acsomega.2c05852.
  • Liu Z, Xie Z, Li W, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnology. 2021;19(1):160. doi: 10.1186/s12951-021-00903-7.
  • Gunaydin G, Gedik ME, Ayan S. Photodynamic therapy—current limitations and novel approaches. Front Chem. 2021;9:691697. doi: 10.3389/fchem.2021.691697.
  • Chen Z, Liu L, Liang R, et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano. 2018;12(8):8633–8645. doi: 10.1021/acsnano.8b04371.
  • Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present, and future. Chem Rec. 2017;17(8):775–802. doi: 10.1002/tcr.201600121.
  • Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy – mechanisms, photosensitizers, and combinations. Biomed Pharmacother. 2018;106:1098–1107. doi: 10.1016/j.biopha.2018.07.049.
  • Zhang Q, Li L. Photodynamic combinational therapy in cancer treatment. J BUON. 2018;23(3):561–567.
  • Moosavi MA, Sharifi M, Ghafary SM, et al. Photodynamic N-TiO2 nanoparticle treatment induces controlled ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci Rep. 2016;6(1):34413. doi: 10.1038/srep34413.
  • Sun Y, Zhao D, Wang G, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B. 2020;10(8):1382–1396. doi: 10.1016/j.apsb.2020.01.004.
  • Nowak-Stepniowska A, Pergoł P, Padzik-Graczyk A. Photodynamic method of cancer diagnosis and therapy – mechanisms and applications. Postepy Biochem. 2013;59(1):53–63.
  • Baptista MS, Cadet J, Di Mascio P, et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol. 2017;93(4):912–919. doi: 10.1111/php.12716.
  • Bhatt H, Kiran Rompicharla SV, Ghosh B, et al. Α-tocopherol succinate-anchored PEGylated poly(amidoamine) dendrimer for the delivery of paclitaxel: assessment of in vitro and in vivo therapeutic efficacy. Mol Pharm. 2019;16(4):1541–1554. doi: 10.1021/acs.molpharmaceut.8b01232.
  • Guo W, Wang F, Ding D, et al. TiO2–x based nanoplatform for ­bimodal cancer imaging and NIR-triggered chem/photodynamic/photothermal combination therapy. Chem Mater. 2017;29(21):9262–9274. doi: 10.1021/acs.chemmater.7b03241.
  • Zhou, Z., Song, J., Nie, L., Chen, X., 2016. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev, 45 (23):6597–6626. doi: 10.1039/c6cs00271d.
  • Tomalia DA, Khanna SN. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem Rev. 2016;116(4):2705–2774. doi: 10.1021/acs.chemrev.5b00367.
  • Caminade A, Turrin C, Majoral J. Biological properties of water-soluble phosphorhydrazone dendrimers. Braz J Pharm Sci. 2013;49:33–44. doi: 10.1590/S1984-82502013000700004.
  • Liu Y, Ma K, Jiao T, et al. Water-insoluble photosensitizer nanocolloids stabilized by supramolecular interfacial assembly towards photodynamic therapy. Sci Rep. 2017;7(1):42978. doi: 10.1038/srep42978.
  • Mokwena MG, Kruger CA, Ivan M, et al. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagn Photodyn Ther. 2018;22:147–154. doi: 10.1016/j.pdpdt.2018.03.006.
  • Rkein AM, Ozog DM. Photodynamic therapy. Dermatol Clin. 2014;32(3):415–425, x. doi: 10.1016/j.det.2014.03.009.
  • Forster JC, Harriss-Phillips WM, Douglass MJ, et al. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia. 2017;5:21–32.
  • Zhao Y, Biswas S, Chen Q, et al. Direct readout hypoxia tumor suppression in vivo through NIR-theranostic activation. ACS Appl Biomater. 2021;4(7):5686–5694.
  • Tan Z, Xu J, Zhang B, et al. Hypoxia: a barricade to conquer the pancreatic cancer. Cell Mol Life Sci. 2020;77(16):3077–3083. doi: 10.1007/s00018-019-03444-3.
  • Rotow J, Bivona TG. Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 2017;17(11):637–658. doi: 10.1038/nrc.2017.84.
  • Zhu F, Xu L, Li X, et al. Co-delivery of gefitinib and hematoporphyrin by aptamer-modified fluorinated dendrimer for hypoxia alleviation and enhanced synergistic chemo-photodynamic therapy of NSCLC. Eur J Pharm Sci. 2021;167:106004. doi: 10.1016/j.ejps.2021.106004.
  • Wang L, Huo M, Chen Y, et al. Tumor microenvironment-enabled nanotherapy. Adv Healthc Mater. 2018;7(8):1701156. doi: 10.1002/adhm.201701156.
  • Zhang D, Cai Z, Liao N, et al. pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework. Chem Sci. 2018;9(37):7390–7399. doi: 10.1039/c8sc02408a.
  • Huizing FJ, Hoeben BA, Franssen GM, et al. Quantitative imaging of the hypoxia-related marker CAIX in head and neck squamous cell carcinoma xenograft models. Mol Pharm. 2018;16(2):701–708. doi: 10.1021/acs.molpharmaceut.8b00950.
  • Jung HS, Han J, Shi H, et al. Overcoming the limits of hypoxia in photodynamic therapy: a carbonic anhydrase IX-targeted approach. J Am Chem Soc. 2017;139(22):7595–7602. doi: 10.1021/jacs.7b02396.
  • Arima H, Motoyama K, Higashi T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev. 2013;65(9):1204–1214. doi: 10.1016/j.addr.2013.04.001.
  • Yang J, Zhang Q, Chang H, et al. Surface-engineered dendrimers in gene delivery. Chem Rev. 2015;115(11):5274–5300. doi: 10.1021/cr500542t.
  • Alam K, Rahman M, Beg S, et al. Advancement in protein-based nanocarriers in targeted anticancer therapy. In: Mahfoozur Rahman, Waleed H. Almalki, Hani Choudhry, Nabil A. Alhakamy, & Sarwar Beg (editors), Nanotherapeutics in cancer vaccination and challenges. Amsterdam: Elsevier; 2022. p. 95–102.
  • Luong D, Kesharwani P, Deshmukh R, et al. PEGylated PAMAM dendrimers: enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater. 2016;43:14–29. doi: 10.1016/j.actbio.2016.07.015.
  • Ming X, Wu L, Carver K, et al. Dendritic nanoconjugates for intracellular delivery of neutral oligonucleotides. Nanoscale. 2015;7(29):12302–12306. doi: 10.1039/c5nr01665g.
  • Figueroa ER, Lin AY, Yan J, et al. Optimization of PAMAM–gold nanoparticle conjugation for gene therapy. Biomaterials. 2014;35(5):1725–1734. doi: 10.1016/j.biomaterials.2013.11.026.
  • Kasturirangan V, Nair BM, Kariapper MT, et al. In vivo toxicity evaluation of gold–dendrimer composite nanodevices with different surface charges. Nanotoxicology. 2013;7(4):441–451. doi: 10.3109/17435390.2012.668570.
  • Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In: Christina E. Day (editors), Histopathology: methods and protocols; Springer: New York . 2014. p. 31–43.
  • Li X, Haba Y, Ochi K, et al. PAMAM dendrimers with an oxyethylene unit-enriched surface as biocompatible temperature-sensitive dendrimers. Bioconjug Chem. 2013;24(2):282–290. doi: 10.1021/bc300190v.
  • Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng C. 2018;90:713–727. doi: 10.1016/j.msec.2018.03.002.
  • Mignani S, Rodrigues J, Tomas H, et al. Dendrimers in combination with natural products and analogues as anti-cancer agents. Chem Soc Rev. 2018;47(2):514–532. doi: 10.1039/c7cs00550d.
  • Zhu J, Xiong Z, Shen M, et al. Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Adv. 2015;5(38):30286–30296. doi: 10.1039/C5RA01215E.
  • Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res. 2017;105(10):2906–2928. doi: 10.1002/jbm.a.36141.
  • Zhang A, Meng K, Liu Y, et al. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci. 2020;284:102261. doi: 10.1016/j.cis.2020.102261.
  • Wheeler KE, Chetwynd AJ, Fahy KM, et al. Environmental dimensions of the protein corona. Nat Nanotechnol. 2021;16(6):617–629. doi: 10.1038/s41565-021-00924-1.
  • Tekie FSM, Hajiramezanali M, Geramifar P, et al. Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci Rep. 2020;10(1):9664. doi: 10.1038/s41598-020-66572-y.
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39(2):268–307. doi: 10.1016/j.progpolymsci.2013.07.005.
  • Saw WS, Anasamy T, Do TTA, et al. Nanoscaled PAMAM dendrimer spacer improved the photothermal–photodynamic treatment efficiency of photosensitizer-decorated confeito-like gold nanoparticles for cancer therapy. Macromol Biosci. 2022;22(8):e2200130. doi: 10.1002/mabi.202200130.
  • Zhu Y, Liu C, Pang Z. Dendrimer-based drug delivery systems for brain targeting. Biomolecules. 2019;9(12):790. doi: 10.3390/biom9120790.
  • Beddoes CM, Case CP, Briscoe WH. Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Colloid Interface Sci. 2015;218:48–68. doi: 10.1016/j.cis.2015.01.007.
  • Kesharwani P, Mishra V, Jain NK. Generation dependent hemolytic profile of folate engineered poly(propyleneimine) dendrimer. J Drug Deliv Sci Technol. 2015;28:1–6. doi: 10.1016/j.jddst.2015.04.006.
  • Soni N, Tekade M, Kesharwani P, et al. Recent advances in oncological submissions of dendrimer. Curr Pharm Des. 2017;23(21):3084–3098. doi: 10.2174/1381612823666170329150201.
  • Kannan, R.M., Nance, E., Kannan, S. and Tomalia, D.A., 2014. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. Journal of internal medicine, 276(6):579-617. doi: 10.1111/joim.12280.
  • Araújo R, Santos S, Igne Ferreira E, et al. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23(11):2849. doi: 10.3390/molecules23112849.
  • Thiagarajan G, Greish K, Ghandehari H. Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur J Pharm Biopharm. 2013;84(2):330–334. doi: 10.1016/j.ejpb.2013.01.019.
  • Kumbhar SA, Gorain B, Choudhury H, et al. Safety and toxicity issues of dendrimers. In: Prashant Kesharwani (editors), Dendrimer-based nanotherapeutics. Amsterdam: Elsevier; 2021. p. 143–162.
  • Felder-Flesch D. Dendrimers in nanomedicine. New York : Jenny Stanford Publishing; 2016.
  • Kulhari H, Pooja D, Prajapati SK, et al. Performance evaluation of PAMAM dendrimer based simvastatin formulations. Int J Pharm. 2011;405(1–2):203–209. doi: 10.1016/j.ijpharm.2010.12.002.