3,317
Views
11
CrossRef citations to date
0
Altmetric
Articles

Effect of cryogenic treatment of tungsten carbide tools on cutting force and power consumption in CNC milling process

ORCID Icon, &
Pages 149-170 | Received 01 Jul 2017, Accepted 29 Jan 2018, Published online: 08 Feb 2018

References

  • Abou-El-Hossein, K. A., Kadirgama, K., & Hamdi, M. (2007). Prediction of cutting force in end milling operation of modified AISI P20 tool steel. Journal of Materials Processing Technology, 182(1–3), 241–247.10.1016/j.jmatprotec.2006.07.037
  • Aggarwal, A., Singh, H., Kumar, P., & Singh, M. (2008). Minimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. Journal of Materials Processing Technology, 205, 42–50.10.1016/j.jmatprotec.2007.11.105
  • Campatelli, G., & Scippa, A. (2012). Prediction of milling cutting force coefficients for Aluminum 6082-T4. 5th CIRP Conference on High Performance Cutting, Zurich, Switzerland.
  • Chopra, S. A., & Sargade, V. G. (2015). Metallurgy behind the Cryogenic Treatment of Cutting Tools: An overview. Materials Today: Proceedings, 2, 1814–1824. doi:10.1016/j.matpr.2015.07.119
  • Dhananchezian, M., Pradeep Kumar, M., & Sorna Kumar, T. (2011). Cryogenic turning of AISI 304 stainless steel with modified tungsten carbide tool inserts. Materials and Manufacturing Processes, 26, 781–785.10.1080/10426911003720821
  • Dieringa, H. (2017). Influence of cryogenic temperatures on the microstructure and mechanical properties of magnesium alloys: A review. Metals, 7, 38. doi:10.3390/met7020038
  • Giasin, K., Ayvar-Soberanis, S., & Hodzic, A. (2016). Evaluation of cryogenic cooling and minimum quantity lubrication effects on machining GLARE laminates using design of experiments. Journal of Cleaner Production, 135, 533–548. doi:10.1016/j.jclepro.2016.06.098
  • Ghosh, C. S., & Rao, P. V. (2017). Performance evaluation of deep cryogenic processed carbide inserts during dry turning of Nimonic 90 aerospace grade alloy. Tribology International, 115, 397–408. doi:10.1016/j.triboint.2017.06.013
  • Gao, Y., Luo, B. H., Bai, Z. H., Zhu, Z., & Ouyang, S. (2016). Effects of deep cryogenic treatment on the microstructure and properties of WC-Fe-Ni tungsten carbides. International Journal of Refractory Metals and Hard Materials, 58, 42–50. doi:10.1016/j.ijrmhm.2016.03.010
  • Gill, S. S., Singh, H., Singh, R., & Singh, J. (2011). Flank wear and machining performance of cryogenically treated tungsten carbide inserts. Materials and Manufacturing Processes, 26, 1430–1441.10.1080/10426914.2011.557128
  • Jaya kumar, K., Mathew, J., & Joseph, M. A. (2012). An investigation of cutting force and tool–work interface temperature in milling of Al–SiCp metal matrix composite. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(3), 362–374.
  • Kadirgama, K., Abou-El-Hossein, K. A., Mohammad, B., AL-Ani, H., & Noor, M. M. (2008). Cutting force prediction model by FEA and RSM when machining Hastelloy C-22HS with 90○ holder. Journal of Scientific & Industrial Research, 67, 521–427.
  • Kalsi, N. S., Segal, R., & Sharma, V. S. (2010). Cryogenic Treatment of Tool Materials: A Review. Materials and Manufacturing Processes, 25(10), 1077–1100.10.1080/10426911003720862
  • Kalyan Kumar, K. V. B. S., & Choudhury, S. K. (2008). Investigation of tool wear and cutting force in cryogenic machining using design of experiments. Journal of Materials Processing Technology, 203, 95–101.10.1016/j.jmatprotec.2007.10.036
  • Karabulut, S. (2015). Minimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and Taguchi method. Measurement, 66, 139–149.10.1016/j.measurement.2015.01.027
  • Khan, A. A., & Ahmed, M. I. (2008). Improving tool life using cryogenic cooling. Journal of Materials Processing Technology, 196(1–3), 149–154.10.1016/j.jmatprotec.2007.05.030
  • Kondayya, D., & Krishna, G. A. (2012). An integrated evolutionary approach for modeling and minimization of CNC end milling process. International Journal of Computer Integrated Manufacturing, 25(11), 1069–1084.10.1080/0951192X.2012.684718
  • Li, H. Z., & Li, X. P. (2002). Milling force prediction using a dynamic shear length model. International Journal of Machine Tools and Manufacture, 42, 277–286.10.1016/S0890-6955(01)00098-0
  • Li, S., Min, N., Li, J., & Xiaochun, W. (2013). Internal friction measurements of phase transformations during the process of deep cryogenic treatment of a tool steel. Cryogenics, 57, 1–5. doi:10.1016/j.cryogenics.2013.03.003
  • Li, J., Yan, X., Liang, X., Hong, G., & Li, D. Y. (2016). Influence of different cryogenic treatments on high-temperature wear behaviour of M2 steel. Wear, 376, 1112–1121. doi:10.1016/j.wear.2016.11.041
  • Nalbant, M., & Yildiz, Y. (2011). Effect of cryogenic cooling in milling process of AISI 304 stainless steel. Transactions of Nonferrous Metals Society of China, 21, 72–79.10.1016/S1003-6326(11)60680-8
  • Özbek, N. A., Çiçek, A., Gülesin, M., & Özbek, O. (2015). Effect of cutting conditions on wear performance of cryogenically treated tungsten carbide inserts in dry turning of stainless steel. Tribology International, 94, 223–233. doi:10.1016/j.triboint.2015.08.024
  • Perez, M., & Belzunce, F. J. (2014). The effect of deep cryogenic treatments on the mechanical properties of AISI H13 steel. Materials Science & Engineering A, 624, 32–40. doi:10.1016/j.msea.2014.11.051
  • Pilligrin, C. J., Asokan, P., Jerald, J., & Kanagaraj, G. (2017a). Tool speed and polarity effects in micro-EDM drilling of 316L stainless steel. Production & Manufacturing Research, 5(1), 99–117.10.1080/21693277.2017.1357055
  • Pilligrin, C. J., Asokan, P., Jerald, J., & Kanagaraj, G. (2017b). Effects of electrode materials on performance measures of electrical discharge micro-machining. Materials and Manufacturing Processes, 33(6),1–10. doi:10.1080/10426914.2017.1364757
  • Podgornik, B., Paulin, I., Zajec, B., Jacobson, S., & Leskovšek, V. (2016). Deep cryogenic treatment of tool steels. Journal of Materials Processing Technology, 229, 398–406. doi:10.1016/j.jmatprotec.2015.09.045
  • Safari, H., Sharif, S., Izman, S., Jafari, H., & Kurniawan, D. (2014). Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti–6Al-4 V ELI. Materials and Manufacturing Processes, 29, 350–356.10.1080/10426914.2013.872257
  • Sartori, S., Moro, L., Ghiotti, A., & Bruschi, S. (2016). On the tool wear mechanisms in dry and cryogenic turning Additive Manufactured titanium alloys. Tribiology International, 105, 264–273. doi:10.1016/j.triboint.2016.09.034
  • Singh, S., Singh, S., & Singh, J. (2011). Improvement in tool life of M2HSS tools by cryogenic treatment. Journal of Metallurgical Engineering, 1, 47–61.
  • Sobotova, J., Jurci, P., & Dlouhy, I. (2016). The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Materials Science & Engineering A, 652, 192–204. doi:10.1016/j.msea.2015.11.078
  • Sreerama Reddy, T. V., Sorna Kumar, T., Venkatarama Reddy, M., & Venkatram, R. (2008). Machining performance of low temperature treated P-30 tungsten carbide cutting tool inserts. Cryogenics, 48, 458–461.10.1016/j.cryogenics.2008.06.001
  • Sreerama Reddy, T. V., Sorna Kumar, T., Venkatarama Reddy, M., Venkatram, R., & Senthil Kumar, A. (2009a). Turning studies of deep cryogenic treated p-40 tungsten carbide cutting tool inserts – technical communication. Machining Science and Technology, 13, 269–281.10.1080/10910340902979754
  • Sreerama Reddy, T. V., Sorna Kumar, T., Venkatarama Reddy, M., & Venkatram, R. (2009b). Machinability of C45 steel with deep cryogenic treated tungsten carbide cutting tool inserts. International Journal of Refractory Metals and Hard Materials, 27, 181–185.10.1016/j.ijrmhm.2008.04.007
  • Suresh Kumar Reddy, N., & Venkateswara Rao, P. (2006). Experimental investigation to study the effect of solid lubricants on cutting forces and surface quality in end milling. International Journal of Machine Tools & Manufacture, 46, 189–198.10.1016/j.ijmachtools.2005.04.008
  • Thamizhmanii, S., Mohideen, R., Zaidi, A. M. A., & Hasan, S. (2015). Surface roughness and tool wear on cryogenic treated CBN insert on titanium and inconel 718 alloy steel. IOP Conference Series: Materials Science and Engineering, 100, 012058. doi:10.1088/1757-899X/100/1/012058
  • Thamizhmanii, S., Nagib, M., & Sulaiman, H. (2011). Performance of deep cryogenically treated and non-treated PVD inserts in milling. Journal of Achievements in Materials and Manufacturing Engineering, 49(2), 460–466.
  • Turgut, Y., Cxinici, H., & Sxahin, I. (2011). Study of cutting force and surface roughness in milling of Al/SiC metal matrix composites. Sci Res Essays, 6(10), 2056–2062.
  • Vishnu Vardhan, M., Sankaraiah, G., & Yohan, M. (2017a). Optimization of parameters in CNC milling of P20 steel using response surface methodology and Taguchi method. Materials Today: Proceedings, 4, 9163–9169.10.1016/j.matpr.2017.07.273
  • Vishnu Vardhan, M., Sankaraiah, G., & Yohan, M. (2017b). Performance evaluation of deep cryogenic treated tools at different temperatures in CNC milling. ARPN Journal of Engineering and Applied Sciences, 12, 7262–7273.
  • Wang, F., Liu, J., & Shu, Q. (2017). Minimization of cryogenic milling parameters for AFRP. International Journal of Advanced Manufacturing Technology, 91, 3243–3252. doi:10.1007/s00170-017-0003-0
  • Xie, C.-H., Huang, J.-W., Tang, Y.-F., & GU, L.-N. (2015). Effects of deep cryogenic treatment on microstructure and properties of WC−11Co tungsten carbides with various carbon contents. Transactions of Nonferrous Metals Society of China, 25, 3023–3028. doi:10.1016/S1003-6326(15)63929-2
  • Yan, X. G., & Li, D. Y. (2013). Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4 V high speed steel. Wear, 302, 854–862. doi:10.1016/j.wear.2012.12.037
  • Yong, A. Y. L., Seah, K. H. W., & Rahman, M. (2007). Performance of cryogenically treated tungsten carbide tools in milling operations. The International Journal of Advanced Manufacturing Technology, 32(7–8), 638–643.10.1007/s00170-005-0379-0
  • Yun, W. S., & Cho, D. W. (2001). Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling. International Journal of Machine Tools and Manufacture, 41, 463–478.10.1016/S0890-6955(00)00097-3
  • Zheng, L., Chiou, Y. S., & Liang, S. Y. (1996). Three dimensional cutting force analysis in end milling. International Journal of Mechanical Sciences, 38(3), 259–269.10.1016/0020-7403(95)00057-7