721
Views
0
CrossRef citations to date
0
Altmetric
Articles

An interpretable predictive modelling framework for the turning process by the use of a compensated fuzzy logic system

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 89-107 | Received 27 Jul 2020, Accepted 05 Apr 2022, Published online: 18 Apr 2022

References

  • AlAlaween, W. H., AlAlawin, A. H., Al-Durgham, L., & Albashabsheh, N. T. (2021). A new integrated modelling architecture based on the concept of the fuzzy logic for the turning process. Journal of Intelligent & Fuzzy Systems, 41(1), 655–667. https://doi.org/10.3233/JIFS-202457
  • AlAlaween, W. H., Khorsheed, B., Mahfouf, M., Gabbott, I., Reynolds, G. K., & Salman, A. D. (2018). Transparent predictive modelling of the twin screw granulation process using a compensated interval type-2 fuzzy system. European Journal of Pharmaceutics and Biopharmaceutics, 124, 138–146. https://doi.org/10.1016/j.ejpb.2017.12.015
  • AlAlaween, W. H., Mahfouf, M., & Salman, A. D. (2016). Predictive modelling of the granulation process using a systems-engineering approach. Powder Technology, 302, 265–274. https://doi.org/10.1016/j.powtec.2016.08.049
  • AlAlaween, W. H., Mahfouf, M., & Salman, A. D. (2017). Integrating the physics with data analytics for the hybrid modeling of the granulation process. AIChE Journal, 63(11), 4761–4773. https://doi.org/10.1002/aic.15831
  • Barzani, M. M., Zalnezhad, E., Sarhan, A. A., Farahany, S., & Ramesh, S. (2015). Fuzzy logic based model for predicting surface roughness of machined Al–Si–Cu–Fe die casting alloy using different additives-turning. Measurement, 61, 150–161. https://doi.org/10.1016/j.measurement.2014.10.003
  • Bhardwaj, B., Kumar, R., & Singh, P. K. (2014). Surface roughness (Ra) prediction model for turning of AISI 1019 steel using response surface methodology and Box–Cox transformation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(2), 223–232. https://doi.org/10.1177/0954405413499564
  • Bhattacharya, A., Das, S., Majumder, P., & Batish, A. (2009). Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Production Engineering, 3(1), 31–40. https://doi.org/10.1007/s11740-008-0132-2
  • Bishop, C. M. (2006). Pattern recognition and machine learning. springer.
  • Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces (Vol. 424). Wiley New York.
  • Davim, J. P., Gaitonde, V., & Karnik, S. (2008). Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. Journal of Materials Processing Technology, 205(1–3), 16–23. https://doi.org/10.1016/j.jmatprotec.2007.11.082
  • Grzesik, W., & Brol, S. (2003). Hybrid approach to surface roughness evaluation in multistage machining processes. Journal of Materials Processing Technology, 134(2), 265–272. https://doi.org/10.1016/S0924-0136(02)01105-6
  • Kamatala, M., Baumgartner, E., & Moon, K. (1996). Turned surface finish prediction based on fuzzy logic theory. Proceedings of the 20th international conference on computer and industrial engineering.
  • Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Sciences, 132(1–4), 195–220. https://doi.org/10.1016/S0020-0255(01)00069-X
  • Khanlou, H. M., Ang, B. C., & Barzani, M. M. (2016). Prediction, modeling and characterization of surface texturing by sulfuric etchant on non-toxic titanium bio-material using artificial neural networks and fuzzy logic systems. Science and Engineering of Composite Materials, 23(4), 423–433. https://doi.org/10.1515/secm-2014-0230
  • Kumar, H., & Kumar, A. (2011). Investigations on measurement uncertainty and stability of dial gauged force proving instruments. NCSLI Measure, 6(2), 64–68. https://doi.org/10.1080/19315775.2011.11721558
  • Kumar, S., Yadav, N., & Rizvi, Y. (2018). A review of modelling and optimization techniques in turning processes. International Journal of Mechanical Engineering and Technology, 9(3), 1146–1156. https://iaeme.com/Home/article_id/IJMET_09_03_118
  • Kuo, R., & Cohen, P. (1998). Manufacturing process control through integration of neural networks and fuzzy model. Fuzzy Sets and Systems, 98(1), 15–31. https://doi.org/10.1016/S0165-0114(96)00382-X
  • Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242. https://doi.org/10.1007/s12599-014-0334-4
  • Lin, W., Lee, B., & Wu, C. (2001). Modeling the surface roughness and cutting force for turning. Journal of Materials Processing Technology, 108(3), 286–293. https://doi.org/10.1016/S0924-0136(00)00835-9
  • Liu, T., & Ko, E. (1990). On-line recognition of drill wear via artificial neural networks. Winter annual meeting of the ASME, monitoring and control for manufacturing processes.
  • Marani, M., Songmene, V., Zeinali, M., Kouam, J., & Zedan, Y. (2020). Neuro-fuzzy predictive model for surface roughness and cutting force of machined Al–20 Mg 2 Si–2Cu metal matrix composite using additives. Neural Computing & Applications, 32(12), 8115–8126. https://doi.org/10.1007/s00521-019-04314-6
  • Marani, M., Zeinali, M., Farahany, S., & Mechefske, C. K. (2021). Neuro-fuzzy based predictive model for cutting force in CNC turning process of Al–Si–Cu cast alloy using modifier elements. SN Applied Sciences, 3(1), 1–11. https://doi.org/10.1007/s42452-020-03980-9
  • Nukman, Y., Hassan, M., & Harizam, M. (2013). Optimization of prediction error in CO2 laser cutting process by Taguchi artificial neural network hybrid with genetic algorithm. Applied Mathematics & Information Sciences, 7(1), 363–370. https://doi.org/10.12785/amis/070145
  • Piotrowska, I., Brandt, C., Karimi, H. R., & Maass, P. (2009). Mathematical model of micro turning process. The International Journal of Advanced Manufacturing Technology, 45(1), 33–40. https://doi.org/10.1007/s00170-009-1932-z
  • Purushothaman, S., & Srinivasa, Y. (1994). A back-propagation algorithm applied to tool wear monitoring. International Journal of Machine Tools & Manufacture, 34(5), 625–631. https://doi.org/10.1016/0890-6955(94)90047-7
  • Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32(1), 21–36. https://doi.org/10.1007/s10845-020-01555-4
  • Rogers, S., & Girolami, M. (2016). A first course in machine learning. Chapman and Hall/CRC.
  • Rubio, E., & Castillo, O. (2013). Interval type-2 fuzzy clustering for membership function generation. 2013 IEEE workshop on Hybrid Intelligent Models and Applications (HIMA).
  • Shahani, A., Setayeshi, S., Nodamaie, S., Asadi, M., & Rezaie, S. (2009). Prediction of influence parameters on the hot rolling process using finite element method and neural network. Journal of Materials Processing Technology, 209(4), 1920–1935. https://doi.org/10.1016/j.jmatprotec.2008.04.055
  • Sharma, V. S., Dhiman, S., Sehgal, R., & Sharma, S. (2008). Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of Intelligent Manufacturing, 19(4), 473–483. https://doi.org/10.1007/s10845-008-0097-1
  • Tan, W. W., & Chua, T. W. (2007). Uncertain rule-based fuzzy logic systems: Introduction and new directions (Mendel, JM; 2001)[book review]. IEEE Computational Intelligence Magazine, 2(1), 72–73. https://doi.org/10.1109/MCI.2007.357196
  • Unune, D. R., Barzani, M. M., Mohite, S. S., & Mali, H. S. (2018). Fuzzy logic-based model for predicting material removal rate and average surface roughness of machined Nimonic 80A using abrasive-mixed electro-discharge diamond surface grinding. Neural Computing & Applications, 29(9), 647–662. https://doi.org/10.1007/s00521-016-2581–4
  • Uthayakumar, M., Prabhakaran, G., Aravindan, S., & Sivaprasad, J. (2012). Influence of cutting force on bimetallic piston machining by a cubic boron nitride (CBN) tool. Materials and Manufacturing Processes, 27(10), 1078–1083. https://doi.org/10.1080/10426914.2012.677913
  • Yang, Y. Y., Mahfouf, M., & Panoutsos, G. (2012). Probabilistic characterisation of model error using Gaussian mixture model—With application to Charpy impact energy prediction for alloy steel. Control Engineering Practice, 20(1), 82–92. https://doi.org/10.1016/j.conengprac.2011.10.001
  • Yao, Y., & Fang, X. (1993). Assessment of chip forming patterns with tool wear progression in machining via neural networks. International Journal of Machine Tools & Manufacture, 33(1), 89–102. https://doi.org/10.1016/0890-6955(93)90066-4