1,079
Views
3
CrossRef citations to date
0
Altmetric
Articles

Multi-objective optimization of recycling and remanufacturing supply chain logistics network with scalable facility under uncertainty

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 641-665 | Received 26 Aug 2021, Accepted 10 Aug 2022, Published online: 05 Sep 2022

References

  • Alkahtani, M., Ziout, A., Salah, B., Alatefi, M., Abd Elgawad, A. E. E., Badwelan, A., & Syarif, U. (2021). An insight into reverse logistics with a focus on collection systems. Sustainability, 13(2), 548. https://doi.org/10.3390/su13020548
  • Alumur, S. A., Nickel, S., Saldanha-Da-Gama, F., & Verter, V. (2012). Multi-period reverse logistics network design. European Journal of Operational Research, 220(1), 67–78. https://doi.org/10.1016/j.ejor.2011.12.045
  • Aydin, R., Kwong, C. K., Geda, M. W., & Okudan Kremer, G. E. (2018). Determining the optimal quantity and quality levels of used product returns for remanufacturing under multi-period and uncertain quality of returns. International Journal of Advanced Manufacturing Technology, 94(9), 4401–4414. https://doi.org/10.1007/s00170-017-1141-0
  • Dat, L. Q., Linh, D. T. T., Chou, S. Y., & Yu, V. (2012). Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Systems with Applications, 39(7), 6380–6387. https://doi.org/10.1016/j.eswa.2011.12.031
  • Demirel, E., Demirel, N., & Gokcen, H. (2016). A mixed integer linear programming model to optimize reverse logistics activities of end-of-life vehicles in Turkey. Journal of Cleaner Production, 112, 2101–2113. https://doi.org/10.1016/j.jclepro.2014.10.079
  • Ding, Y. S., Li, X., & Dao, Y. (2014). Multi-period and multi-objective dynamic location model for remanufacturing logistics network. Chinese Journal of Management, 11(3), 428–433. https://doi.org/10.3969/j.1672-884x.2014.03.017
  • Fathollahi-Fard, A. M., Dulebenets, M. A., Hajiaghaei-Keshteli, M., Tavakkoli-Moghaddam, R., & Mirzahosseinian, H. (2021). Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty. Advanced Engineering Informatics, 50(4), 101418. https://doi.org/10.1016/j.aei.2021.101418
  • Feng, D. Z., Yu, X. H., Mao, Y. B., Ding, Y. K., Zhang, Y., & Pan, Z. Y. (2019). Pricing decision for reverse logistics system under cross-competitive take-back mode based on game theory. Sustainability, 11(24), 6984. https://doi.org/10.3390/su11246984
  • Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J. M., & Wassenhove, L. N. (2010). The impact of product recovery on logistics network design. Production and Operations Management, 10(2), 156–173. https://doi.org/10.1111/j.1937-5956.2001.tb00076.x
  • Gao, T. S., & Gao, B. (2016). Failure rate prediction of substation equipment combined with grey linear regression combination model. IEEE International Conference on High Voltage Engineering & Application, Chengdu, China, 1–5. https://doi.org/10.1109/ICHVE.2016.7800850
  • Gao, J. H., Wang, R., & Wang, H. Y. (2015). Closed-loop supply chain network design under carbon subsidies. Computer Integrated Manufacturing Systems, 21(11), 3033–3040. https://doi.org/10.13196/j.cims.2015.11.024
  • Ghezavati, V., & Nia, N. S. (2015). Development of an optimization model for product returns using genetic algorithms and simulated annealing. Soft Computing, 19(11), 3055–3069. https://doi.org/10.1007/s00500-014-1465-8
  • Guo, J. Q., & Gao, Y. (2015). Optimal strategies for manufacturing/remanufacturing system with the consideration of recycled products. Computers & Industrial Engineering, 89(C), 226–234. https://doi.org/10.1016/j.cie.2014.11.020
  • Hosseini-Motlagh, S. M., Samani, M., & Saadi, F. A. (2021). Strategic optimization of wheat supply chain network under uncertainty: A real case study. Operational Research, 21(3), 1487–1527. https://doi.org/10.1007/s12351-019-00515-y
  • Jiang, G., Wang, Q., Wang, K., Zhang, Q., & Zhou, J. (2020). A novel closed-loop supply chain network design considering enterprise profit and service level. Sustainability, 12(2), 544. https://doi.org/10.3390/su12020544
  • Jorge, M. G., Claus, R., Andreas, N., & Kruse, R. (2002). Neuro-fuzzy approach to forecast returns of scrapped products to recycling and remanufacturing. Knowledge-Based Systems, 15(1/2), 119–128. https://doi.org/10.1016/S0950-7051(01)
  • Ko, H. J., & Evans, G. W. (2005). A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Computers & Operations Research, 34(2), 346–366. https://doi.org/10.1016/j.cor.2005.03.004
  • Liu, W. J., & Fang, Z. G. (2007). Application of IGM(1,1)-TFN model in the forecasting of returns. Control Theory & Applications, 24(3), 459–464. https://doi.org/10.3969/j.1000-8152.2007.03.025
  • Luo, D., Liu, S. F., & Dang, Y. G. (2003). The optimization of grey model GM(1,1). Engineering Science, 5(8), 50–53. https://doi.org/10.3969/j.1009-1742.2003.08.007
  • Lv, J., & Du, S. C. (2017). Time-space modeling of waste electrical and electronic equipment return prediction. Industrial Engineering & Management, 22(6), 92–98. https://doi.org/10.19495/j.cnki.1007-5429.2017.06.013
  • Ma, R. M., Yao, L. F., Jin, M. Z., Ren, P. Y., & Lv, Z. H. (2016). Robust environmental closed-loop supply chain design under uncertainty. Chaos. Chaos, Solitons & Fractals, 89, 195–202. https://doi.org/10.1016/j.chaos.2015.10.028
  • Madhi, M., & Mohamed, N. (2017). An initial condition optimization approach for improving the prediction precision of a GM(1,1) model. Mathematical and Computational Applications, 22(1), 21–26. https://doi.org/10.3390/mca22010021
  • Mao, H. J., Ji, X. Z., Li, X. H., He, J., & Qiao, X. N. (2008). Research on remanufacturing reverse logistics network facility location projects simulation evaluation. IEEE International Conference on Management Science and Engineering, Long Beach, CA, USA, 488–494. https://doi.org/10.1109/ICMSE.2007.4421895
  • Min, H., & Ko, H. J. (2007). The dynamic design of a reverse logistics network from the perspective of third-party logistics service providers. International Journal of Production Economics, 113(1), 176–192. https://doi.org/10.1016/j.ijpe.2007.01.017
  • Nili, M., Seyedhosseini, S. M., Jabalameli, M. S., & Dehghani, E. (2021). A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran. Renewable and Sustainable Energy Reviews, 150. https://doi.org/10.1016/j.rser.2021.111428
  • Nurjanni, K. P., Carvalho, M. S., & Costa, L. (2017). Green supply chain design: A mathematical modeling approach based on a multi-objective optimization model. International Journal of Production Economics, 183(Part B), 421–432. https://doi.org/10.1016/j.ijpe.2016.08.028
  • Reddy, K. N., Kumar, A., Sarkis, J., & Tiwari, M. K. (2020). Effect of carbon tax on reverse logistics network design. Computers & Industrial Engineering, 139(1), 1–13. https://doi.org/10.1016/j.cie.2019.106184
  • Ren, Y. P., Yu, D. Y., Zhang, C. Y., Tian, G. D., Meng, L. L., & Zhou, X. Q. (2017). An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. International Journal of Production Research, 55(23–24), 7302–7316. https://doi.org/10.1080/00207543.2017.1341066
  • Roghanian, E., & Pazhoheshfar, P. (2014). An optimization model for reverse logistics network under stochastic environment by using genetic algorithm. Journal of Manufacturing Systems, 33(3), 348–356. https://doi.org/10.1016/j.jmsy.2014.02.007
  • Roudbari, E. S., Ghomi, S., & Sajadie, H. M. S. (2021). Reverse logistics network design for product reuse, remanufacturing, recycling and refurbishing under uncertainty. Journal of Manufacturing Systems, 60(14), 473–486. https://doi.org/10.1016/j.jmsy.2021.06.012
  • Samani, M., & Hosseini-Motlagh, S. M. (2021). A mixed uncertainty approach to design a bioenergy network considering sustainability and efficiency measures. Computers & Chemical Engineering, 149(4), 107305. https://doi.org/10.1016/j.compchemeng.2021.107305
  • Sharifi, M., Hosseini-Motlagh, S. M., Samani, M., & Kalhor, T. (2020). Novel resilient-sustainable strategies for second-generation biofuel network design considering neem and eruca sativa under hybrid stochastic fuzzy robust approach. Computers & Chemical Engineering, 143(1), 107073. https://doi.org/10.1016/j.compchemeng.2020.107073
  • Sim, E., Jung, S., Kim, H., & Park, J. (2004). A generic network design for a closed-loop supply chain using genetic algorithm. Genetic & Evolutionary Computation Conference, Seattle, WA, USA, 1214–1225. https://doi.org/10.1007/978-3-540-24855-2_129
  • song, S. X., Liu, M., Liu, G. F., & Ke, Q. D. (2016). Theories and design methods for proactive remanufacturing of modern products. Journal of Mechanical Engineering, 52(7), 133–141. https://doi.org/10.3901/JME.2016.07.133
  • Srinivasan, S., & Khan, S. H. (2018). Multi-stage manufacturing/re-manufacturing facility location and allocation model under uncertain demand and return. International Journal of Advanced Manufacturing Technology, 94(14), 2847–2860. https://doi.org/10.1007/s00170-017-1066-7
  • Subulan, K., Baykasoglu, A., & Saltabaş, A. (2014). An improved decoding procedure and seeker optimization algorithm for reverse logistics network design problem. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 27(6), 2703–2714. https://doi.org/10.3233/IFS-141335
  • Tan, Y., & Guo, C. X. (2019). Research on two-way logistics operation with uncertain recycling quality in government multi-policy environment. Sustainability, 11(3), 882. https://doi.org/10.3390/su11030882
  • Tighazoui, A., Turki, S., Sauvey, C., & Sauern, N. (2019). Optimal design of a manufacturing-remanufacturing-transport system within a reverse logistics chain. International Journal of Advanced Manufacturing Technology, 101(5–8), 1773–1791. https://doi.org/10.1007/s00170-018-2945-2
  • Toktay, L. B., Wein, L. M., & Zenios, S. A. (2000). Inventory management of remanufacturable products. Management Science, 46(11), 1412–1426. https://doi.org/10.1287/mnsc.46.11.1412.12082
  • Tu, N., Chang, L. F., Mai, H. D., & Dai, W. J. (2013). Multi-objective optimization of closed-loop logistics network with facility expansion. Industrial Engineering Journal, 16(5), 53–61. https://doi.org/10.3969/j.1007-7375.2013.05.009
  • Wang, Z. F., Cui, Y., Wang, L., & Xie, M. (2012). Optimization for remanufacturing closed-loop logistics network under uncertain environment. Computer Engineering and Applications, 48(36), 221–226. https://doi.org/10.3778/j.1002-8331.1205-0174
  • Wang, L., Xia, X. H., Cao, J. H., & Liu, X. (2019). Modeling and predicting remanufacturing time of equipment using deep belief networks. Cluster Computing, 22(S2), S2677–S2688. https://doi.org/10.1007/s10586-017-1430-2
  • Wu, Y. S. (2013). Prediction method of recovery amount for closed-loop supply chain based on production life cycle. Mathematics in Practice and Theory, 43(24), 1–6. https://doi.org/10.3969/j.1000-0984.2013.24.001
  • Xu, S. T., Miu, Z. W., Tan, Z., Cai, N. Z., & ShangGuan, L. L. (2020). Electronic products returns forecasting system based on a hybrid algorithm. Journal of Industrial Engineering Management, 34(1),147-153. https://doi.org/10.13587/j.cnki.jieem.2020.01.016
  • Yu, H., & Solvang, W. D. (2017). A carbon-constrained stochastic optimization model with augmented multi-criteria scenario-based risk-averse solution for reverse logistics network design under uncertainty. Journal of Cleaner Production, 164(15), 1248–1267. https://doi.org/10.1016/j.jclepro.2017.07.066
  • Yuan, F., & Li, H. (2008). Optimization design of a closed-loop supply chain network based on remanufacturing. Manufacture Information Engineering of China, 37(23), 1–5. https://doi.org/10.3969/j.1672-1616.2008.23.001
  • Zhao, X., Xia, X. H., Wang, L., & Yu, G. D. (2018). Risk-averse facility location for green closed-loop supply chain networks design under uncertainty. Sustainability, 10(11), 4072. https://doi.org/10.3390/su10114072