1,886
Views
1
CrossRef citations to date
0
Altmetric
Articles

The concept of collaborative engineering: a systematic literature review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 784-839 | Received 18 Jul 2022, Accepted 29 Aug 2022, Published online: 03 Nov 2022

References

  • Abbass, H. A., Fogel, G., & Fidock, J. (2018). Guest editorial: Special issue on human–machine symbiosis. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 246–248. https://doi.org/10.1109/TETCI.2018.2867053
  • Abreu, A., & Camarinha-Matos, L. M. (2008). A benefit analysis model for collaborative networks. In Camarinha-Matos, L. M., Afsarmanesh, H. (Eds.), Collaborative networks: Reference modeling (pp. 253–276). Springer.
  • Anand, B. N., & Khanna, T. (2000). Do firms learn to create value? The case of alliances. Strategic Management Journal, 21(3), 295–315. https://doi.org/10.1002/(SICI)1097-0266(200003)21:3<295::AID-SMJ91>3.0.CO;2-O
  • Ansari, F., Hold, P., & Khobreh, M. (2020). A knowledge-based approach for representing Jobholder profile toward optimal human–machine collaboration in cyber physical production systems. CIRP Journal of Manufacturing Science and Technology, 28, 87–106. https://doi.org/10.1016/j.cirpj.2019.11.005
  • Ansari, F., Khobreh, M., Seidenberg, U., & Sihn, W. (2018). A problem-solving ontology for human-centered cyber physical production systems. CIRP Journal of Manufacturing Science and Technology, 22, 91–106. https://doi.org/10.1016/j.cirpj.2018.06.002
  • Arana-Arexolaleiba, N., Urrestilla-Anguiozar, N., Chrysostomou, D., & Bøgh, S. (2019). Transferring human manipulation knowledge to industrial robots using reinforcement learning. Procedia Manufacturing, 38, 1508–1515. https://doi.org/10.1016/j.promfg.2020.01.136
  • Argyris, C., & Schön, D. A. (1997). Organizational learning: A theory of action perspective. Reis, 77/78(77/78), 345–348. https://doi.org/10.2307/40183951
  • Arias, E., Eden, H., Fischer, G., Gorman, A., & Scharff, E. (2000). Transcending the individual human mind—creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI), 7(1), 84–113. https://doi.org/10.1145/344949.345015
  • Arrais-Castro, A., Varela, M. L. R., Putnik, G. D., Ribeiro, R. A., Machado, J., & Ferreira, L. (2018). Collaborative framework for virtual organisation synthesis based on a dynamic multi-criteria decision model. International Journal of Computer Integrated Manufacturing, Taylor & Francis, 31(9)1–12. https://doi.org/10.1080/0951192X.2018.1447146
  • Backström, T. (2004). Collective learning: A way over the ridge to a new organizational attractor. The Learning Organization.
  • Baheti, R., & Gill, H. (2011). Cyber-physical systems. The Impact of Control Technology, 12(1), 161–166. http://ieeecss.org/sites/ieeecss/files/2019-07/IoCT-Part3-02CyberphysicalSystems.pdf
  • Bechar, A., Nof, S. Y., & Wachs, J. P. (2015). A review and framework of laser-based collaboration support. Annual Reviews in Control, 39, 30–45. https://doi.org/10.1016/j.arcontrol.2015.03.003
  • Bechtold, J., & Lauenstein, C. (2014). Digitizing manufacturing: ready set go. Capgemini, 7, 2016. https://www.de.capgemini-consulting.com/resource-file-access/resource/pdf/digitizing-manufacturing_0.pdf.Zugegriffenam
  • Bello, L. L., Mubeen, S., Saponara, S., Mariani, R., & Bordoloi, U. D. (2019). Guest editorial embedded and networked systems for intelligent vehicles and robots. IEEE Transactions on Industrial Informatics, 15(2), 1035–1037. 10.1109/TII.2018.2886529
  • Besharati-Foumani, H., Lohtander, M., & Varis, J. (2019). Intelligent process planning for smart manufacturing systems: A state-of-the-art review. Procedia Manufacturing, 38, 156–162. https://doi.org/10.1016/j.promfg.2020.01.021
  • Bilberg, A., & Malik, A. A. (2019). Digital twin driven human–robot collaborative assembly. CIRP Annals, 68(1), 499–502. https://doi.org/10.1016/j.cirp.2019.04.011
  • Birch-Jensen, A., Gremyr, I., & Halldórsson, Á. (2020). Digitally connected services: Improvements through customer-imitated feedback. European Management Journal, 38(5), 814–825. https://doi.org/10.1016/j.emj.2020.03.008
  • Bochmann, L., Bänziger, T., Kunz, A., & Wegener, K. (2017). Human-robot collaboration in decentralized manufacturing systems: An approach for simulation-based evaluation of future intelligent production. Procedia CIRP, 62, 624–629. https://doi.org/10.1016/j.procir.2016.06.021
  • Bourelos, P., Kousiouris, G., Voutyras, O., Marinakis, A., Varvarigou, T., & Moulos, V. (2020). Smart heating in collaborative and reasoning-enabled housing units. Future Generation Computer Systems, 109, 644–656. https://doi.org/10.1016/j.future.2018.10.007
  • Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). A human cyber physical system framework for operator 4.0–artificial intelligence symbiosis. Manufacturing Letters, 25, 10–15. https://doi.org/10.1016/j.mfglet.2020.06.001
  • Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Information and Communication Engineering, 8(1), 37–44. doi:10.5281/zenodo.1336426
  • Brocke, J. V., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., & Cleven, A. (2009). Reconstructing the giant: On the importance of rigour in documenting the literature search process. AIS Electronic Library.
  • Büth, L., Blume, S., Posselt, G., & Herrmann, C. (2018). Training concept for and with digitalization in learning factories: An energy efficiency training case, ECIS 2009 Proceedings. 161. 23, 171–176. https://aisel.aisnet.org/ecis2009/161/?utm_source=aisel.aisnet.org%2Fecis2009%2F161&utm_medium=PDF&utm_campaign=PDFCoverPages
  • Camarinha-Matos, L. M., & Afsarmanesh, H. (2006, June). Collaborative networks. In International conference on programming languages for manufacturing (pp. 26–40). Springer, Boston, MA.
  • Cao, J., Castiglione, A., Motta, G., Pop, F., Yang, Y., & Zhou, W. (2018). Human-driven edge computing and communication: Part 2. IEEE Communications Magazine, 56(2), 134–135. https://doi.org/10.1109/MCOM.2018.8291128
  • Chen, Y., Lee, G. M., Shu, L., & Crespi, N. (2016). Industrial internet of things-based collaborative sensing intelligence: Framework and research challenges. Sensors, 16(2), 215. https://doi.org/10.3390/s16020215
  • Cherubini, A., Passama, R., Navarro, B., Sorour, M., Khelloufi, A., Mazhar, O., Fraisse, P., Tempier, O., Crosnier, A., Fraisse, P., Ramdani, S., & Tarbouriech, S. (2019). A collaborative robot for the factory of the future: Bazar. The International Journal of Advanced Manufacturing Technology, 105(9), 3643–3659. https://doi.org/10.1007/s00170-019-03806-y
  • Çil, Z. A., Li, Z., Mete, S., & Özceylan, E. (2020). Mathematical model and bee algorithms for mixed-model assembly line balancing problem with physical human–robot collaboration. Applied Soft Computing, 93, 106394. https://doi.org/10.1016/j.asoc.2020.106394
  • Cimini, C., Pirola, F., Pinto, R., & Cavalieri, S. (2020). A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, 54, 258–271. https://doi.org/10.1016/j.jmsy.2020.01.002
  • Coccoli, M., Guercio, A., Maresca, P., & Stanganelli, L. (2014). Smarter universities: A vision for the fast changing digital era. Journal of Visual Languages & Computing, 25(6), 1003–1011. https://doi.org/10.1016/j.jvlc.2014.09.007
  • Cullen, J. (1999). Socially constructed learning: A commentary on the concept of the learning organization. The Learning Organization: An International Journal, 6(1), 45–52. https://doi.org/10.1108/09696479910255710
  • Daniyan, I., Mpofu, K., Oyesola, M., Ramatsetse, B., & Adeodu, A. (2020). Artificial intelligence for predictive maintenance in the railcar learning factories. Procedia Manufacturing, 45, 13–18. https://doi.org/10.1016/j.promfg.2020.04.032
  • Darvish, K., Wanderlingh, F., Bruno, B., Simetti, E., Mastrogiovanni, F., & Casalino, G. (2018). Flexible human–robot cooperation models for assisted shop-floor tasks. Mechatronics, 51, 97–114. https://doi.org/10.1016/j.mechatronics.2018.03.006
  • Demir, K. A., Döven, G., & Sezen, B. (2019). Industry 5.0 and human-robot co working. Procedia Computer Science, 158, 688–695. https://doi.org/10.1016/j.procs.2019.09.104
  • Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), The Sage handbook of organizational research methods (pp. 671–689). Sage Publications Ltd.
  • Dombrowski, U., Stefanak, T., & Reimer, A. (2018). Simulation of human-robot collaboration by means of power and force limiting. Procedia Manufacturing, 17, 134–141. https://doi.org/10.1016/j.promfg.2018.10.028
  • Draulans, J., DeMAN, A. P., & Volberda, H. W. (2003). Building alliance capability: Management techniques for superior alliance performance. Long Range Planning, 36(2), 151–166. https://doi.org/10.1016/S0024-6301(02)00173-5
  • Drew, S. A., & Smith, P. A. (1995). The learning organization: “change proofing” and strategy. The Learning Organization, 2(1), 4–14. https://doi.org/10.1108/09696479510075598
  • Dusadeerungsikul, P. O., Sreeram, M., He, X., Nair, A., Ramani, K., Quinn, A. J., & Nof, S. Y. (2019). collaboration requirement planning protocol for HUB-CI in factories of the future. Procedia Manufacturing, 39, 218–225. https://doi.org/10.1016/j.promfg.2020.01.327
  • Eijnatten, F. M., & Putnik, G. D. (2004). Chaos, complexity, learning, and the learning organization: Towards a chaordic enterprise. The Learning Organization.
  • Emmanouilidis, C., Pistofidis, P., Bertoncelj, L., Katsouros, V., Fournaris, A., Koulamas, C., & Ruiz-Carcel, C. (2019). Enabling the human in the loop: Linked data and knowledge in industrial cyber-physical systems. Annual Reviews in Control, 47, 249–265. https://doi.org/10.1016/j.arcontrol.2019.03.004
  • Fantini, P., Pinzone, M., & Taisch, M. (2020). Placing the operator at the centre of industry 4.0 design: Modelling and assessing human activities within cyber-physical systems. Computers & Industrial Engineering, 139, 105058. https://doi.org/10.1016/j.cie.2018.01.025
  • Fernández-Caramés, T. M., & Fraga-Lamas, P. (2018). A review on human-centered IoT connected smart labels for the industry 4.0. IEEE Access, 6, 25939–25957. https://doi.org/10.1109/ACCESS.2018.2833501
  • Fletcher, S. R., Johnson, T., Adlon, T., Larreina, J., Casla, P., Parigot, L., Del Mar Otero, M., & Alfaro, P. J. (2020). Adaptive automation assembly: Identifying system requirements for technical efficiency and worker satisfaction. Computers & Industrial Engineering, 139, 105772. https://doi.org/10.1016/j.cie.2019.03.036
  • Gammieri, L., Schumann, M., Pelliccia, L., Di Gironimo, G., & Klimant, P. (2017). Coupling of a redundant manipulator with a virtual reality environment to enhance human-robot cooperation. Procedia CIRP, 62, 618–623. https://doi.org/10.1016/j.procir.2016.06.056
  • Garcia, C. A., Montalvo-Lopez, W., & Garcia, M. V. (2020). Human-robot collaboration based on cyber-physical production system and mqtt. Procedia Manufacturing, 42, 315–321. https://doi.org/10.1016/j.promfg.2020.02.088
  • Giorgio, A., Lundgren, M., & Wang, L. (2020). Procedural knowledge and function blocks for smart process planning. Procedia Manufacturing, 48, 1079–1087. https://doi.org/10.1016/j.promfg.2020.05.148
  • Gualtieri, L., Monizza, G. P., Rauch, E., Vidoni, R., & Matt, D. T. (2020). From design for assembly to design for collaborative assembly-product design principles for enhancing safety, ergonomics and efficiency in human-robot collaboration. Procedia CIRP, 91, 546–552. https://doi.org/10.1016/j.procir.2020.02.212
  • Guerin, C., Rauffet, P., Chauvin, C., & Martin, E. (2019). Toward production operator 4.0: Modelling human machine cooperation in industry 4.0 with. Cognitive Work Analysis. IFAC-PapersOnLine, 52(19), 73–78. https://doi.org/10.1016/j.ifacol.2019.12.111
  • Haddara, M., & Elragal, A. (2015). The readiness of ERP systems for the factory of the future. Procedia Computer Science, 64, 721–728. https://doi.org/10.1016/j.procs.2015.08.598
  • Hancock, P. A., Jagacinski, R. J., Parasuraman, R., Wickens, C. D., Wilson, G. F., & Kaber, D. B. (2013). Human-automation interaction research: Past, present, and future. Ergonomics in Design, 21(2), 9–14. https://doi.org/10.1177/1064804613477099
  • Hilal, A. R., Sayedelahl, A., Tabibiazar, A., Kamel, M. S., & Basir, O. A. (2018). A distributed sensor management for large-scale IoT indoor acoustic surveillance. Future Generation Computer Systems, 86, 1170–1184. https://doi.org/10.1016/j.future.2018.01.020
  • Hippertt, M. P., Junior, M. L., Szejka, A. L., Junior, O. C., Loures, E. R., & Santos, E. A. P. (2019). Towards safety level definition based on the HRN approach for industrial robots in collaborative activities. Procedia Manufacturing, 38, 1481–1490. https://doi.org/10.1016/j.promfg.2020.01.139
  • Hummel, V., Hyra, K., Ranz, F., & Schuhmacher, J. (2015). Competence development for the holistic design of collaborative work systems in the logistics learning factory. Procedia CIRP, 32, 76–81. https://doi.org/10.1016/j.procir.2015.02.111
  • Hutchins, E. (1995). Cognition in the Wild. MIT Press.
  • Huysman, M. (2000). An organizational learning approach to the learning organization. European Journal of Work and Organizational Psychology, 9(2), 133–145. https://doi.org/10.1080/135943200397905
  • Hyland, T., & Matlay, H. (1997). Small businesses, training needs and VET provision. Journal of Education and Work, 10(2), 129‐39. https://doi.org/10.1080/1363908970100202
  • Jensen, J. A., & Rasmussen, O. E. (2004). An inquiry into the foundations of organizational learning and the learning organization. The Learning Organization.
  • Juraschek, M., Büth, L., Posselt, G., & Herrmann, C. (2018). Mixed reality in learning factories. Procedia Manufacturing, 23, 153–158. https://doi.org/10.1016/j.promfg.2018.04.009
  • Kaasinen, E., Schmalfuß, F., Özturk, C., Aromaa, S., Boubekeur, M., Heilala, J., Heikkilä, P., Kuula, T., Liinasuo, M., Mach, S., Mehta, R., Petäjä, E., & Walter, T. (2020). Empowering and engaging industrial workers with Operator 4.0 solutions. Computers & Industrial Engineering, 139, 105678. https://doi.org/10.1016/j.cie.2019.01.052
  • Kafle, V. P., Fukushima, Y., & Harai, H. (2016). Internet of things standardization in ITU and prospective networking technologies. IEEE Communications Magazine, 54(9), 43–49. https://doi.org/10.1109/MCOM.2016.7565271
  • Khalid, A., Kirisci, P., Ghrairi, Z., Thoben, K. D., & Pannek, J. (2016). A methodology to develop collaborative robotic cyber physical systems for production environments. Logistics Research, 9(1), 23. https://doi.org/10.1007/s12159-016-0151-x
  • Knoben, J., & Oerlemans, L. A. (2006). Proximity and inter‐organizational collaboration: A literature review. International Journal of Management Reviews, 8(2), 71–89. https://doi.org/10.1111/j.1468-2370.2006.00121.x
  • Kofman, F., & Senge, P. M. (1993). Communities of commitment: The heart of learning organizations. Organizational Dynamics, 22(2), 5–23. https://doi.org/10.1016/0090-2616(93)90050-B
  • Kolb, D. A. (1984). Experiential learning: experience as the source of learning and development. Prentice Hall.
  • Kubicki, S., Guerriero, A., Schwartz, L., Daher, E., & Idris, B. (2019). Assessment of synchronous interactive devices for BIM project coordination: Prospective ergonomics approach. Automation in Construction, 101, 160–178. https://doi.org/10.1016/j.autcon.2018.12.009
  • Lai, E. R. (2011). Collaboration: A literature review. Pearson Publisher. Retrieved. November, 11, 2016.
  • Lambe, C. J., Spekman, R. E., & Hunt, S. D. (2002). Alliance competence, resources, and alliance success: Conceptualization, measurement, and initial test. Journal of the Academy of Marketing Science, 30(2), 141–158. https://doi.org/10.1177/03079459994399
  • Landherr, M., Schneider, U., & Bauernhansl, T. (2016). The Application Center Industrie 4.0 Industry-driven manufacturing, research and development. Procedia Cirp, 57, 26–31. https://doi.org/10.1016/j.procir.2016.11.006
  • Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia Cirp, 16, 3–8. https://doi.org/10.1016/j.procir.2014.02.001
  • Li, W. D., & Qiu, Z. M. (2006). State-of-the-art technologies and methodologies for collaborative product development systems. International Journal of Production Research, 44(13), 2525–2559. https://doi.org/10.1080/00207540500422080
  • Liu, Q., Liu, Z., Xu, W., Tang, Q., Zhou, Z., & Pham, D. T. (2019). Human-robot collaboration in disassembly for sustainable manufacturing. International Journal of Production Research, 57(12), 4027 4044. https://doi.org/10.1080/00207543.2019.1578906
  • Liu, Z., Liu, Q., Xu, W., Zhou, Z., & Pham, D. T. (2018). Human-robot collaborative manufacturing using cooperative game: Framework and implementation. Procedia CIRP, 72, 87–92. https://doi.org/10.1016/j.procir.2018.03.172
  • Liu, H., & Wang, L. (2020). Remote human–robot collaboration: A cyber–physical system application for hazard manufacturing environment. Journal of Manufacturing Systems, 54, 24–34. https://doi.org/10.1016/j.jmsy.2019.11.001
  • Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in industry 4.0: A human centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Computers & Industrial Engineering, 113, 144–159. https://doi.org/10.1016/j.cie.2017.09.016
  • Louw, L., & Walker, M. (2018). Design and implementation of a low cost RFID track and trace system in a learning factory. In Advanced Engineering Education & Training for Manufacturing Innovation”8th CIRP Sponsored Conference on Learning Factories (CLF 2018), Procedia Manufacturing. 23, 255–260. Elsevier doi:10.1016/j.promfg.2018.04.026
  • Lun, R., & Zhao, W. (2015). A survey of applications and human motion recognition with microsoft kinect. International Journal of Pattern Recognition and Artificial Intelligence, 29(5), 1555008. https://doi.org/10.1142/S0218001415550083
  • Malik, A. A., & Bilberg, A. (2018). Digital twins of human robot collaboration in a production setting. Procedia Manufacturing, 17, 278–285. https://doi.org/10.1016/j.promfg.2018.10.047
  • Manupati, V. K., Putnik, G. D., & Varela, M. L. R. (2022). Smart and sustainable manufacturing systems for industry 4.0. CRC Press, Taylor & Francis Group.
  • Ma, X., Tao, F., Zhang, M., Wang, T., & Zuo, Y. (2019). Digital twin enhanced human machine interaction in product lifecycle. Procedia CIRP, 83, 789–793. https://doi.org/10.1016/j.procir.2019.04.330
  • McHugh, D., Groves, D., & Alker, A. (1998). Managing learning: What do we learn from a learning organisation? The Learning Organization.
  • Myers, B. A. (1998). A brief history of human-computer interaction technology. interactions, 5(2), 44–54. https://doi.org/10.1145/274430.274436
  • Nadin, M. (2001). One cannot not interact. Knowledge-based Systems, 14(8), 437–440. https://doi.org/10.1016/S0950-7051(01)00138-1
  • Nahavandi, S. (2019). Industry 5.0 - A human-centric solution. Sustainability, 11(16), 4371. https://doi.org/10.3390/su11164371
  • Nelles, J., Kuz, S., Mertens, A., & Schlick, C. M. Human-centered design of assistance systems for production planning and control: The role of the human in industry 4.0, in Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, IEEE, 2016, pp. 2099–2104. https://ieeexplore.ieee.org/abstract/document/7475093
  • Newell, A., & Card, S. K. (1985). The prospects for psychological science in human-computer interaction. Human–Computer Interaction, 1(3), 209–242. https://doi.org/10.1207/s15327051hci0103_1
  • Nikolakis, N., Maratos, V., & Makris, S. (2019). A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robotics and Computer-Integrated Manufacturing, 56, 233–243. https://doi.org/10.1016/j.rcim.2018.10.003
  • Nikolakis, N., Sipsas, K., & Makris, S. (2018). A cyber-physical context-aware system for coordinating human-robot collaboration. Procedia CIRP, 72, 27–32. https://doi.org/10.1016/j.procir.2018.03.033
  • Noble, B. F . (2004). Applying adaptive environmental management. Resource and environmental management in Canada. In B. Mitchell, (Ed.), Resource and environmental management in Canada. Oxford University Press, Don Mills, Ontario, Canada, 3(1), 442–466.
  • Norman, M., & Thomas, P. (1990). The very idea: Informing HCI design from conversation analysis. In Computers and conversation (pp. 51–65). Academic Press.
  • Oberc, H., Reuter, M., Wannöffel, M., & Kuhlenkötter, B. (2018). Development of a learning factory concept to train participants regarding digital and human centered decision support. Procedia Manufacturing, 23, 165–170. https://doi.org/10.1016/j.promfg.2018.04.011
  • Obieke, C., Milisavljevic-Syed, J., & Han, J. (2020). Supporting design problem-exploring with emergent technologies. Procedia CIRP, 91, 373–381. https://doi.org/10.1016/j.procir.2020.02.189
  • Oestreich, H., Töniges, T., Wojtynek, M., & Wrede, S. (2019). Interactive learning of assembly processes using digital assistance. Procedia Manufacturing, 31, 14–19. https://doi.org/10.1016/j.promfg.2019.03.003
  • Ooi, B. Y., & Shirmohammadi, S. (2020). The potential of IoT for instrumentation and measurement. IEEE Instrumentation & Measurement Magazine, 23(3), 21–26. https://doi.org/10.1109/MIM.2020.9082794
  • Orsino, A., Kovalchukov, R., Samuylov, A., Moltchanov, D., Andreev, S., Koucheryavy, Y., & Valkama, M. (2018). Caching-aided collaborative D2D operation for predictive data dissemination in industrial IoT. IEEE Wireless Communications, 25(3), 50–57. https://doi.org/10.1109/MWC.2018.1700320
  • Osterrieder, P., Budde, L., & Friedli, T. (2020). The smart factory as a key construct of industry 4.0: A systematic literature review. International Journal of Production Economics, 221, 107476. https://doi.org/10.1016/j.ijpe.2019.08.011
  • Ottogalli, K., Rosquete, D., Amundarain, A., Aguinaga, I., & Borro, D. (2019). Flexible framework to model industry 4.0 processes for virtual simulators. Applied Sciences, 9(23), 4983. https://doi.org/10.3390/app9234983
  • Oyekan, J. O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M. H., Mariani, M. P., López-Dávalos, L., Ricaud, T., Singh, S., & Dupuis, C. (2019). The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans. Robotics and Computer-Integrated Manufacturing, 55, 41–54. https://doi.org/10.1016/j.rcim.2018.07.006
  • Pace, F., Manuri, F., Sanna, A., & Fornaro, C. (2020). A systematic review of augmented reality interfaces for collaborative industrial robots. Computers & Industrial Engineering, 149, 106806. https://doi.org/10.1016/j.cie.2020.106806
  • Papazoglou, M. P., Elgammal, A., & Krämer, B. J. (2018). Collaborative on-demand product-service systems customization lifecycle. CIRP Journal of Manufacturing Science and Technology, 29(Part B), 205–219. doi:10.1016/j.cirpj.2018.08.003
  • Pedler, M., Burgoyne, J., & Boydell, T. (1991). The learning company: A strategy for sustainable development (pp. 243). McGraw‐Hill.
  • Peruzzini, M., Grandi, F., & Pellicciari, M. (2017). Benchmarking of tools for user experience analysis in industry 4.0. Procedia Manufacturing, 11, 806–813. https://doi.org/10.1016/j.promfg.2017.07.182
  • Petrillo, A., De Felice, F., Cioffi, R., & Zomparelli, F. (2018). Fourth industrial revolution: Current practices, challenges, and opportunities. Digital Transformation in Smart Manufacturing, 1–20, 2018. doi:10.5772/interchopen.72304
  • Pfaff, C. C., & Hasan, H. (2011). Wiki-based knowledge management systems for more democratic organizations. Journal of Computer Information Systems, 52(2), 73–82. https://www.tandfonline.com/doi/abs/10.1080/08874417.2011.11645542
  • Pilati, F., Faccio, M., Gamberi, M., & Regattieri, A. (2020). Learning manual assembly through real time motion capture for operator training with augmented reality. Procedia Manufacturing, 45, 189–195. https://doi.org/10.1016/j.promfg.2020.04.093
  • Posada, J., Zorrilla, M., Dominguez, A., Simoes, B., Eisert, P., Stricker, D., Rambach, J., Dollner, J., & Guevara, M. (2018). Graphics and media technologies for operators in industry 4.0. IEEE Computer Graphics and Applications, 38(5), 119–132. https://doi.org/10.1109/MCG.2018.053491736
  • Posselt, G., Böhme, S., Aymans, S., Herrmann, C., & Kauffeld, S. (2016). Intelligent learning management by means of multi-sensory feedback. Procedia CIRP, 54, 77–82. https://doi.org/10.1016/j.procir.2016.05.061
  • Putnik, G. D., Pabba, S. K., Manupati, V. K., Varela, M. L. R., & Ferreira, F. (2021d). semi-Double-loop machine learning based CPS approach for predictive maintenance in manufacturing system based on machine status indications. CIRP Annals - Manufacturing Technology Elsevier, Netherlands. 0007-8506., 70(1), 365–368. https://doi.org/10.1016/j.cirp.2021.04.046
  • Putnik, G. D., & Putnik, Z. (2019). Defining sequential engineering (SeqE), simultaneous engineering (SE), concurrent engineering (CE) and collaborative engineering (ColE): On similarities and differences. Procedia CIRP, 84, 68–75. https://doi.org/10.1016/j.procir.2019.07.005
  • Putnik, G. D., Putnik, Z., Shah, V., Varela, L., Ferreira, L., Castro, H., Catia, A., & Pinheiro, P. Collaborative engineering definition: Distinguishing it from concurrent engineering through the complexity and semiotics lenses. (2021a). IOP Conference Series: Materials Science and Engineering, 1174(1), 012027. IOP Publishing. https://doi.org/10.1088/1757-899X/1174/1/012027
  • Putnik, G. D., Putnik, Z., Shah, V., Varela, L., Ferreira, L., Castro, H., Catia, A., & Pinheiro, P. Collaborative engineering: a review of organisational forms for implementation and operation. (2021b). IOP Conference Series: Materials Science and Engineering, 1174(1), 012028. IOP Publishing. https://doi.org/10.1088/1757-899X/1174/1/012028
  • Putnik, G. D., Shah, V., Putnik, Z., & Ferreira, L. (2020). Machine learning in cyber-physical systems and manufacturing singularity - it does not mean total automation, human is still in the centre: Part I - manufacturing singularity and an intelligent machine architecture. Journal of Machine Engineering, 20(2020), 133–153. https://bibliotekanauki.pl/articles/1428709
  • Putnik, G. D., Shah, V., Putnik, Z., & Ferreira, L. (2021c). Machine learning in cyber-physical systems and manufacturing singularity - it does not mean total automation, human is still in the centre: Part II - In-CPS and a view from community on Industry 4.0 impact on society. Journal of Machine Engineering, 21, 133–153. https://doi.org/10.36897/jme/134245
  • Quindazzi, M. , PwC maturiti model – industry 4.0 capabilities develop across seven dimensions and four stages: https://twitter.com/mikequindazzi/status/829993822008532992
  • Quint, F., Sebastian, K., & Gorecky, D. (2015). A mixed-reality learning environment. Procedia Computer Science, 75, 43–48. https://doi.org/10.1016/j.procs.2015.12.199
  • Rathee, G., Sharma, A., Kumar, R., & Iqbal, R. (2019). A secure communicating things network framework for industrial IoT using blockchain technology. Ad Hoc Networks, 94, 101933. https://doi.org/10.1016/j.adhoc.2019.101933
  • Rauch, E., Linder, C., & Dallasega, P. (2020). Anthropocentric perspective of production before and within Industry 4.0. Computers & Industrial Engineering, 139, 105644. IEEE. https://doi.org/10.1016/j.cie.2019.01.018
  • Reis, J., Pinto, R., & Gonçalves, G. Human-centered application using cyber-physical production system, in Proceedings of the IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 8634–8639.
  • Reuter, M., Oberc, H., Wannöffel, M., Kreimeier, D., Klippert, J., Pawlicki, P., & Kuhlenkötter, B. (2017). Learning factories’ trainings as an enabler of proactive workers’ participation regarding Industrie 4.0. Procedia Manufacturing, 9, 354–360. https://doi.org/10.1016/j.promfg.2017.04.020
  • Riordan, A., Toal, D., Newe, T., & Dooly, G. (2019). Object recognition within smart manufacturing. Procedia Manufacturing, 38, 408–414. https://doi.org/10.1016/j.promfg.2020.01.052
  • Rojas, R. A., Wehrle, E., & Vidoni, R. (2020). A multicriteria motion planning approach for combining smoothness and speed in collaborative assembly systems. Applied Sciences, 10(15), 5086. https://doi.org/10.3390/app10155086
  • Römer, T., & Bruder, R. (2015). User centered design of a cyber-physical support solution for assembly processes. Procedia Manufacturing, 3, 456–463. https://doi.org/10.1016/j.promfg.2015.07.208
  • Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In IFIP international conference on advances in production management systems (pp. 677–686). Springer, Cham.
  • Romero, D., Noran, O., Stahre, J., Bernus, P., & Fast-Berglund, Å. (2015, September). Towards a human-centred reference architecture for next generation balanced automation systems: Human-automation symbiosis. In IFIP International Conference on Advances in Production Management Systems (pp. 556–566). Springer, Cham.
  • Romero, D., Wuest, T., Stahre, J., & Gorecky, D. (2017). Social factory architecture: Social networking services and production scenarios through the social internet of things, services and people for the social operator 4.0. In IFIP international conference on advances in production management systems (pp. 265–273). Springer, Cham.
  • Rowley, J., & Slack, F. Conducting a literature review. (2004). Management Research News, 27(6), 31–39. Emerald. https://doi.org/10.1108/01409170410784185
  • Rychener, L., Montet, F., & Hennebert, J. (2020). Architecture proposal for machine learning based industrial process monitoring. Procedia Computer Science, 170, 648–655. https://doi.org/10.1016/j.procs.2020.03.137
  • Sacha, D., Sedlmair, M., Zhang, L. S., Lee, J. A., Peltonen, J., Weiskopf, D., North, S. C., & Keim, D. A. (2017). What you see is what you can change: Human-centered machine learning by interactive visualization. Neurocomputing, 268, 164–175. https://doi.org/10.1016/j.neucom.2017.01.105
  • Schlegel, A., Langer, T., & Putz, M. (2017). Developing and harnessing the potential of SMEs for eco-efficient flexible production. Procedia Manufacturing, 9, 41–48. https://doi.org/10.1016/j.promfg.2017.04.028
  • Schrage, M. (1990). Shared minds: The new technologies of collaboration. Semantic Scholar. https://www.semanticscholar.org/paper/Shared-Minds%3A-The-New-Technologies-of-Collaboration-Schrage/aa8b726e2d4f1ce91ad292d34f6eaefc48bd2d1e
  • Schuhmacher, J., Baumung, W., & Hummel, V. (2017). An intelligent bin system for decentrally controlled intralogistic systems in context of industrie 4.0. In 7th Conference on Learning Factories, CLF 2017, Procedia Manufacturing, Darmstadt, Germany. 9:135–142. Language: English. https://doi.org/10.1016/j.promfg.2017.04.005
  • Schuhmacher, J., & Hummel, V. (2016). Decentralized control of logistic processes in cyber-physical production systems at the example of ESB logistics learning factory. Procedia Cirp, 54, 19–24. https://doi.org/10.1016/j.procir.2016.04.095
  • Schuhmacher, J., & Hummel, V. (2019). Self-organization of changeable intralogistics systems at the ESB Logistics Learning Factory. Procedia Manufacturing, 31, 194–199. https://doi.org/10.1016/j.promfg.2019.03.031
  • Senge, P. M. (1990). the fifth discipline: the art and practice of the learning organization. Doubleday/Currency.
  • Shamszaman, Z. U., & I, M. (2019). Enabling cognitive contributory societies using SIoT: QoS aware real-time virtual object management. Journal of Parallel and Distributed Computing, 123, 61–68. https://doi.org/10.1016/j.jpdc.2018.09.007
  • Shi, J., Wan, J., Yan, H., & Suo, H. (2011, November). A survey of cyber-physical systems. In 2011 international conference on wireless communications and signal processing (WCSP), Changsha, China (pp. 1–6). IEEE.
  • Soatti, G., Savazzi, S., Nicoli, M., Alvarez, M. A., Kianoush, S., Rampa, V., & Spagnolini, U. (2019). Distributed signal processing for dense 5G IoT platforms: Networking, synchronization, interference detection and radio sensing. Ad Hoc Networks, 89, 9–21. https://doi.org/10.1016/j.adhoc.2019.02.006
  • Srivastava, A. (2008, November). Managing Collective Intelligence towards a new corporate governance. In 2008 International Conference on Recent Advances in Microwave Theory and Applications Jaipur, India (pp. 639–640). IEEE.
  • Stern, H., & Becker, T. (2017). Development of a model for the integration of human factors in cyber-physical production systems. Procedia Manufacturing, 9, 151–158. https://doi.org/10.1016/j.promfg.2017.04.030
  • Sun, P. Y. T., & Scott, J. L. (2003). Exploring the divide – Organizational learning and learning organization. The Learning Organization, 10(4), 202‐15. https://doi.org/10.1108/09696470310476972
  • Syberfeldt, A., Holm, M., Danielsson, O., Wang, L., & Lindgren Brewster, R. (2016). Support systems on the industrial shop-floors of the future: operators’ perspective on augmented reality. In 6th CIRP Conference on Assembly Technologies and Systems (CATS), Gothenburg, Sweden, May 16-18, 2016 (Vol. 44, pp. 108–113). Elsevier.
  • Thomas, J. C., & Kellogg, W. A. (1989). Minimizing ecological gaps in interface design. IEEE Software, 6(1), 78–86. https://doi.org/10.1109/52.16905
  • Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning & Control, 27(5), 408–420. https://doi.org/10.1080/09537287.2015.1129464
  • Trab, S., Bajic, E., Zouinkhi, A., Abdelkrim, M. N., Chekir, H., & Ltaief, R. H. (2015). Product allocation planning with safety compatibility constraints in IoT-based warehouse. Procedia Computer Science, 73, 290–297. https://doi.org/10.1016/j.procs.2015.12.033
  • Trstenjak, M., & Cosic, P. (2017). Process planning in Industry 4.0 environment. Procedia Manufacturing, 11, 1744–1750. https://doi.org/10.1016/j.promfg.2017.07.303
  • Tsang, E. W. (1997). Organizational learning and the learning organization: A dichotomy between descriptive and prescriptive research. Human Relations, 50(1), 73–89. https://doi.org/10.1177/001872679705000104
  • Tvenge, N., & Martinsen, K. (2018). Integration of digital learning in industry 4.0. Procedia Manufacturing, 23, 261–266. https://doi.org/10.1016/j.promfg.2018.04.027
  • Ustundag, A., & Cevikcan, E. (2017). Industry 4.0: Managing the digital transformation. Springer.
  • Vafaei, N., Ribeiro, R. A., Camarinha-Matos, L. M., & Varela, L. R. (2019). Normalization techniques for collaborative networks. Kybernetes, 49(4), 1285–1304. https://doi.org/10.1108/K-09-2018-0476
  • Van Laar, E., Van Deursen, A. J., Van Dijk, J. A., & De Haan, J. (2017). The relation between 21st century skills and digital skills: A systematic literature review. Computers in Human Behavior, 72, 577 588. https://doi.org/10.1016/j.chb.2017.03.010
  • Varela, L., Ávila, P., Castro, H., Putnik, G. D., Fonseca, L. M. C., & Ferreira, L. (2022). Manufacturing and management paradigms, methods and tools for sustainable industry 4.0-oriented manufacturing systems. Sustainability, 14(3), 1574. Editorial. MDPI, Swizerland .https://doi.org/10.3390/su14031574
  • Varela, M. L., Putnik, G. D., Manupati, V. K., Rajyalakshmi, G., Trojanowska, J., & Machado, J. (2018). Collaborative manufacturing based on cloud, and on other I4. 0 oriented principles and technologies: A systematic literature review and reflections. Management and Production Engineering Review, 9(3), 90–99. https://doi.org/10.24425/119538
  • Varela, M. L., Putnik, G. D., Manupati, V. K., Rajyalakshmi, G., Trojanowska, J., & Machado, J. (2021). Integrated process planning and scheduling in networked manufacturing systems for I4.0: A review and framework proposal. Wireless Networks, 27(3), 1587–1599. https://doi.org/10.1007/s11276-019-02082-8
  • Vocke, C., Constantinescu, C., & Popescu, D. (2020). Status quo and quo vadis: Creativity techniques and innovation methods for generating extended innovation processes. Procedia CIRP, 91, 39–42. https://doi.org/10.1016/j.procir.2020.02.148
  • Wang, L., Shen, W., Xie, H., Neelamkavil, J., & Pardasani, A. (2002). Collaborative conceptual design—state of the art and future trends. Computer-aided Design, 34(13), 981–996. https://doi.org/10.1016/S0010-4485(01)00157-9
  • Xenakis, A., Karageorgos, A., Lallas, E., Chis, A. E., & González-Vélez, H. (2019). Towards distributed IoT/cloud based fault detection and maintenance in industrial automation. Procedia Computer Science, 151, 683–690. https://doi.org/10.1016/j.procs.2019.04.091
  • Zhang, X., Chen, N., Chen, Z., Wu, L., Li, X., Zhang, L., … Li, D. (2018). Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application. Earth-science Reviews, 185(77/78), 684 703. https://doi.org/10.1016/j.earscirev.2018.07.006
  • Zhao, W., Lun, R., Gordon, C., Fofana, A. B. M., Espy, D. D., Reinthal, M. A., Ekelman, B., Goodman, G. D., Niederriter, J. E., & Luo, X. (2017). A human-centered activity tracking service: Towards a healthier workplace. IEEE Transactions on Human-Machine Systems, 47(3), 343–355. https://doi.org/10.1109/THMS.2016.2611825
  • Zolotová, I., Papcun, P., Kajáti, E., Miškuf, M., & Mocnej, J. (2020). Smart and cognitive solutions for operator 4.0: laboratory H-CPPS case studies. Computers & Industrial Engineering, 139, 105471. https://doi.org/10.1016/j.cie.2018.10.032