1,496
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Throughput bottleneck detection in manufacturing: a systematic review of the literature on methods and operationalization modes

ORCID Icon, , , ORCID Icon &
Article: 2283031 | Received 23 Aug 2023, Accepted 06 Nov 2023, Published online: 28 Nov 2023

References

  • Betterton, C. E., & Silver, S. J. (2012). Detecting bottlenecks in serial production lines – a focus on interdeparture time variance. International Journal of Production Research, 50(15), 4158–26. https://doi.org/10.1080/00207543.2011.596847
  • Cao, Z., Deng, J., Liu, M., & Wang, Y. (2012). Bottleneck prediction method based on improved adaptive network-based fuzzy inference system (ANFIS) in semiconductor manufacturing system. Chinese Journal of Chemical Engineering, 20(6), 1081–1088. https://doi.org/10.1016/S1004-9541(12)60590-4
  • Chang, Q., Ni, J., Bandyopadhyay, P., Biller, S., & Xiao, G. (2007). Supervisory factory control based on real-time production feedback. Journal of Manufacturing Science and Engineering, 129(3), 653. https://doi.org/10.1115/1.2673666
  • Chiang, S.-Y., Kuo, C.-T., & Meerkov, S. M. (2000). DT-bottlenecks in serial production lines: Theory and application. IEEE Transactions on Robotics and Automation, 16(5), 567–580. https://doi.org/10.1109/70.880806
  • Faget, P., Erkisson, U., & Herrmann, F. (2005). Applying discrete event simulation and an automated bottleneck analysis as an aid to detect running production constraints. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 Winter Simulation Conference, Orlando, Florida, USA, (pp. 1401–1407).
  • Goldrat, E. M., & Cox, J. (1990). The goal: A process of ongoing improvement (Third revi). North River Press.
  • Hopp, W. J., Iravani, S. M. R., & Shou, B. (2007). A diagnostic tree for improving production line performance. Production and Operations Management, 16(1), 77–92. https://doi.org/10.1111/j.1937-5956.2007.tb00167.x
  • Hopp, W. J., & Spearman, M. L. (2008). Factory physics : Foundations of manufacturing management (2nd ed.). Long Grove, Illinois, US: Waveland Press.
  • Huang, B., Wang, W., Ren, S., Zhong, R. Y., & Jiang, J. (2019). A proactive task dispatching method based on future bottleneck prediction for the smart factory. International Journal of Computer Integrated Manufacturing, 32(3), 278–293. https://doi.org/10.1080/0951192X.2019.1571241
  • Hutson, M. (2017). AI glossary: Our, in so many words. Science (New York, NY), 357(6346), 19. https://doi.org/10.1126/science.357.6346.19
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415
  • Kuo, C.-T., Lim, J.-T., & Meerkov, S. M. (1996). Bottlenecks in serial production lines: A system-theoretic approach. Mathematical Problems in Engineering, 2(3), 233–276. https://doi.org/10.1155/S1024123X96000348
  • Law, A. M., & Kelton, D. W. (1991). Simulation modeling & analysis. McGraw Hill.
  • Lawrence, R. S., & Buss, H. A. (1994). Shifting production bottlenecks: Causes, cures and conundrums. Production and Operations Management, 3(1), 21–37. https://doi.org/10.1111/j.1937-5956.1994.tb00107.x
  • Li, L. (2009). Bottleneck detection of complex manufacturing systems using a data-driven method. International Journal of Production Research, 47(24), 6929–6940. https://doi.org/10.1080/00207540802427894
  • Li, L. (2018). A systematic-theoretic analysis of data-driven throughput bottleneck detection of production systems. Journal of Manufacturing Systems, 47, 43–52. https://doi.org/10.1016/j.jmsy.2018.03.001
  • Li, J., Blumenfeld, D. E., Huang, N., & Alden, J. M. (2009). Throughput analysis of production systems: Recent advances and future topics. International Journal of Production Research, 47(14), 3823–3851. https://doi.org/10.1080/00207540701829752
  • Li, L., Chang, Q., & Ni, J. (2009). Data driven bottleneck detection of manufacturing systems. International Journal of Production Research, 47(18), 5019–5036. https://doi.org/10.1080/00207540701881860
  • Lima, E., Chwif, L., & Barreto, M. R. P. (2008). Metodology for selecting the best suitable bottleneck detection method. In S. J. Mason, R. Hill, L. Mönch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Conference, Miami, Florida, US, (pp. 1746–1751).
  • Li, L., Qing, C., Xiao, G., & Ambani, S. (2011). Throughput bottleneck prediction of manufacturing systems using time series analysis. Journal of Manufacturing Science and Engineering, 133(2), 1–8. https://doi.org/10.1115/1.4003786
  • Lugaresi, G., & Matta, A. (2021). Automated manufacturing system discovery and digital twin generation. Journal of Manufacturing Systems, 59(January), 51–66. https://doi.org/10.1016/j.jmsy.2021.01.005
  • Owen, J. H., & Huang, N. (2007). Local improvements that degrade system performance: Case studies and discussion for throughput analysis. International Journal of Production Research, 45(10), 2351–2364. https://doi.org/10.1080/00207540600791616
  • Pehrsson, L., Ng, A. H. C., & Bernedixen, J. (2016). Automatic identification of constraints and improvement actions in production systems using multi-objective optimization and post-optimality analysis. Journal of Manufacturing Systems, 39, 24–37. https://doi.org/10.1016/j.jmsy.2016.02.001
  • Rocha, E. M., & Lopes, M. J. (2022). Bottleneck prediction and data-driven discrete-event simulation for a balanced manufacturing line In Procedia computer science (pp. 1145–1154. Vol. 200). Elsevier BV. https://doi.org/10.1016/j.procs.2022.01.314
  • Roser, C., Lorentzen, K., & Deuse, J. (2015). Reliable shop floor bottleneck detection for flow lines through process and inventory observations: The bottleneck walk. Logistics Research, 8(1), 1–9. https://doi.org/10.1007/s12159-015-0127-2
  • Roser, C., & Nakano, M. (2015). A quantitative comparison of bottleneck detection methods in manufacturing systems with particular consideration for shifting bottlenecks. IFIP International Federation for Information Processing 2015, 1, 273–281. https://doi.org/10.1007/978-3-319-22759-7
  • Roser, C., Nakano, M., & Tanaka, M. (2001). A practical bottleneck detection method. In B. A. Peters, J. S. Smith, D. J. Medeiros, & M. W. Rohrer (Eds.), Proceedings of the 2001 Winter Simulation Conference (pp. 949–953). IEEE. https://doi.org/10.1109/WSC.2001.977398
  • Roser, C., Nakano, M., & Tanaka, M. (2002a). Shifting bottleneck detection. In E. Yucesan, C.-H. Chen, J. L. Snowdon, & J. M. Charnes (Eds.), Proceedings of the 2002 Winter Simulation Conference (Vol. 2). https://doi.org/10.1109/WSC.2002.1166360
  • Roser, C., Nakano, M., & Tanaka, M.(2002b). Throughput sensitivity analysis using a single simulation. Proceedings of the Winter Simulation Conference (Vol. 2, pp. 1087–1094). San Diego, California, US.
  • Roser, C., Nakano, M., & Tanaka, M. (2003). Comparison of bottleneck detection methods for AGV systems. In S. Chick, S. PJ, & D. Ferrin (Eds.), Proceedings of the 2003 Winter Simulation Conference, New Orleans, Louisiana, US, (pp. 556–564).
  • Schmenner, R. W., & Swink, M. L. (1998). On theory in operations management. Journal of Operations Management, 17(1), 97–113. https://doi.org/10.1016/S0272-6963(98)00028-X
  • Sengupta, S., Das, K., & VanTil, R. P. (2008). A new method for bottleneck detection. In S. J. Mason, R. R. Hill, L. Monch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Conference, Miami, Florida, US, (pp. 1259–1267).
  • Shao, G., & Helu, M. (n.d.). Framework for a digital twin in manufacturing: Scope and requirements. Manufacturing Letters. https://doi.org/10.1016/j.mfglet.2020.04.004
  • Silva, G. V., Thomitzek, M., Abraham, T., & Herrmann, C. (2021). Bottleneck reduction strategies for energy efficiency in the battery manufacturing. In Procedia CIRP (Vol. 104, pp. 1017–1022). Elsevier BV. https://doi.org/10.1016/j.procir.2021.11.171
  • Subramaniyan, M., Skoogh, A., Bokrantz, J., Sheikh, M. A., Thürer, M., & Chang, Q. (2021). Artificial intelligence for throughput bottleneck analysis – state-of-the-art and future directions. Journal of Manufacturing Systems, 60, 734–751. https://doi.org/10.1016/j.jmsy.2021.07.021
  • Subramaniyan, M., Skoogh, A., Gopalakrishnan, M., & Hanna, A. (2016). Real-time data-driven average active period method for bottleneck detection. International Journal of Design & Nature and Ecodynamics, 11(3), 428–437. https://doi.org/10.2495/DNE-V11-N3-428-437
  • Subramaniyan, M., Skoogh, A., Gopalakrishnan, M., Salomonsson, H., Hanna, A., & Lämkull, D. (2016). An algorithm for data-driven shifting bottleneck detection. Cogent Engineering, 3(1), 1–19. https://doi.org/10.1080/23311916.2016.1239516
  • Subramaniyan, M., Skoogh, A., Muhammad, A. S., Bokrantz, J., Johansson, B., & Roser, C. (2020). A generic hierarchical clustering approach for detecting bottlenecks in manufacturing. Journal of Manufacturing Systems, 55, 143–158. https://doi.org/10.1016/j.jmsy.2020.02.011
  • Subramaniyan, M., Skoogh, A., Salomonsson, H., Bangalore, P., & Bokrantz, J. (2018). A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines. Computers and Industrial Engineering, 125, 533–544. https://doi.org/10.1016/j.cie.2018.04.024
  • Subramaniyan, M., Skoogh, A., Salomonsson, H., Bangalore, P., Gopalakrishnan, M., & Sheikh Muhammad, A. (2018). Data-driven algorithm for throughput bottleneck analysis of production systems. Production and Manufacturing Research, 6(1), 225–246. https://doi.org/10.1080/21693277.2018.1496491
  • Subramaniyan, M., Skoogh, A., Sheikh Muhammad, A., Bokrantz, J., & Turanoğlu Bekar, E. (2019). A prognostic algorithm to prescribe improvement measures on throughput bottlenecks. Journal of Manufacturing Systems, 53, 271–281. https://doi.org/10.1016/j.jmsy.2019.07.004
  • Thürer, M., Ma, L., Stevenson, M., & Roser, C. (2021). Bottleneck detection in high-variety make-to-order shops with complex routings: An assessment by simulation. Production Planning and Control, 1–12. https://doi.org/10.1080/09537287.2021.1885795
  • Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed Management knowledge by means of systematic review* introduction: The need for an evidence- informed approach. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
  • Van Wassenhove, L. N. (2019). Sustainable innovation: Pushing the boundaries of traditional Operations Management. Production and Operations Management, 28(12), 2930–2945. https://doi.org/10.1111/poms.13114
  • Wang, L. C., Chu, P. C., & Lin, S. Y. (2019). Impact of capacity fluctuation on throughput performance for semiconductor wafer fabrication. Robotics and Computer-Integrated Manufacturing, 55(March 2017), 208–216. https://doi.org/10.1016/j.rcim.2018.03.005
  • Wang, Y.-C., Qian-Chuan Zhao, D.-Z.-Z., & Zheng, D. (2005). Bottlenecks in production networks: An overview. Journal of Systems Science and Systems Engineering, 14(3), 347–363. https://doi.org/10.1007/s11518-006-0198-3
  • Wuest, T., Weimer, D., Irgens, C., & Thoben, K. (2016). Machine learning in manufacturing: Advantages, challenges, and applications. Production and Manufacturing Research, 4(1), 1–23. https://doi.org/10.1080/21693277.2016.1192517
  • Wu, K., Zhou, Y., & Zhao, N. (2016). Variability and the fundamental properties of production lines. Computers and Industrial Engineering, 99, 364–371. https://doi.org/10.1016/j.cie.2016.04.014
  • Yu, C., & Matta, A. (2016). Data-driven bottleneck detection in manufacturing systems: A statistical approach. International Journal of Production Research, 54(21), 6317–6322. https://doi.org/10.1080/00207543.2015.1126681