59
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Breakdown of primary frequencies used in pediatric hearing screening with distortion-product otoacoustic emissions (DPOAEs)

ORCID Icon &

References

  • Hall IIJ, Baer JE, Chase PA, et al. Clinical application of otoacoustic emissions: what do we know about factors influencing measurement and analysis? Otolaryngol Head Neck Surg. 1994;110(1):22–38.
  • Kemp DT. Otoacoustic emissions, their origin in cochlear function, and use. Br Med Bull. 2002;63(1):223–241.
  • Janssen T, Niedermeyer HP, Arnold W. Diagnostics of the cochlear amplifier by means of distortion product otoacoustic emissions. ORL J Otorhinolaryngol Relat Spec. 2006;68(6):334–339.
  • Shera CA, Guinan JJ., Jr. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am. 1999;105(2 Pt 1):782–798.
  • Hauser R, Probst R. The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears . J Acoust Soc Am. 1991;89(1):280–286.
  • Kummer P, Janssen T, Hulin P, et al. Optimal L1− L2 primary tone level separation remains independent of test frequency in humans. Hear Res. 2000;146(1–2):47–56.
  • Brownell WE. Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 1990;11(2):82–92.
  • Withnell RH, Yates GK. Onset of basilar membrane non-linearity reflected in cubic distortion tone input-output functions. Hear Res. 1998;123(1-2):87–96.
  • Lonsbury-Martin BL, Martin GK, Telischi FF. Otoacoustic emissions in clinical practice. In: Musiek FE, Rintelmann WF, etitors. Contemporary Perspectives in Hearing Assessment. 3rd ed. Boston, MA: Allyn and Bacon; 1999. p. 167–196.
  • Petersen L, Wilson WJ, Kathard H. A systematic review of stimulus parameters for eliciting distortion product otoacoustic emissions from adult humans. Int J Audiol. 2017;56(6):382–391.
  • Martin GK, Ohlms LA, Harris FP, et al. Distortion product emissions in humans: III. Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol. 1990;99(5_suppl):30–42.
  • Gorga MP, Stover L, Neely ST, et al. The use of cumulative distributions to determine critical values and levels of confidence for clinical distortion product otoacoustic emission measurements. J Acoust Soc Am. 1996;100(2 Pt 1):968–977.
  • Gorga MP, Neely ST, Dorn PA, et al. The use of distortion product otoacoustic emission suppression as an estimate of response growth. J Acoust Soc Am. 2002;111(1):271–284.
  • Neely ST, Johnson TA, Kopun J, et al. Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears. J Acoust Soc Am. 2009;126(2):728–738.
  • Bakhos D, Marx M, Villeneuve A, et al. Electrophysiological exploration of hearing. Eur Ann Otorhinolaryngol Head Neck Dis. 2017;134(5):325–331.
  • Poling GL, Vlosich B, Dreisbach LE. Emerging distortion product otoacoustic emission techniques to identify preclinical warning signs of basal cochlear dysfunction due to ototoxicity. Appl Sci. 2019;9(15):3132.
  • Stover L, Gorga MP, Neely ST, et al. Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am. 1996;100(2 Pt 1):956–967.
  • Wagner W, Plinkert PK. The relationship between auditory threshold and evoked otoacoustic emissions. Eur Arch Otorhinolaryngol. 1999;256(4):177–188.
  • Konrad-Martin D, Poling GL, Dreisbach LE, et al. Serial monitoring of otoacoustic emissions in clinical trials. Otol Neurotol. 2016;37(8):e286–e294.
  • Moepeng M. Applicability of distortion product otoacoustic emissions as a new health surveillance technique for hearing screening in industry [Doctoral dissertation]. Pretoria: University of Pretoria; 2017.
  • Asal S, Sobhy O, Ismail O, et al. Study of the effect of combined interferon and ribavirin therapy on the hearing profile of hepatitis C virus patients. Egypt J Otolaryngol. 2015;31(4):237.
  • Dong W, Stomackin G, Lin X, et al. Distortion product otoacoustic emissions: sensitive measures of tympanic-membrane perforation and healing processes in a gerbil model. Hear Res. 2019;378:3–12.
  • Faranesh N, Magamseh E, Zaaroura S, et al. Hearing and otoacoustic emissions outcome of stapedotomy: does the prosthesis diameter matter? Int Adv Otol. 2017;13(2):162–170.
  • Abdala C. Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates. J Acoust Soc Am. 2000;107(1):446–456.
  • Zelle D, Dalhoff E, Gummer AW. Objective audiometry with DPOAEs: new findings for generation mechanisms and clinical applications. HNO. 2017;65(Suppl 2):122–129.
  • Braun K, Zelle D, Braun LH, et al. Evaluation of the cochlear amplifier using time-efficient acquisition of short-pulse DPOAE levels maps. Laryngo-Rhino-Otologie. 2019;98(S 02):11551.
  • Vencovský V, Vetešník A. Analysis of level dependence of 2f 1–f 2 component of otoacoustic emissions using nonlinear 2D cochlear model. Acta Acustica United Acustica. 2018;104(5):891–894.
  • Verhulst S, Jagadeesh A, Mauermann M, et al. Relations between auditory brainstem response and threshold metrics in normal and impaired hearing listeners. In Proceedings of the International Symposium on Auditory and Audiological Research; 2015 Dec 15; Nyborg, Denmark. 2015. Vol. 5; pp. 35–42.
  • Wiederhold ML, Mahoney JW, Kellogg DL. Acoustic overstimulation reduces 2f 1-f 2 cochlear emissions at all levels in the cat. In: Allen JB, Hall JL, Hubbard AE, Neely ST, Tubis A, editors. Peripheral auditory mechanisms. Berlin, Heidelberg: Springer; 1986.p. 322–329.
  • Whitehead ML, Lonsbury-Martin BL, Martin GK. Actively and passively generated acoustic distortion at 2f 1-f 2 in rabbits. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR, editors. The mechanics and biophysics of hearing. New York, NY: Springer; 1990. p. 243–250.
  • Frolenkov GI, Belyantseva IA, Kurc M, et al. Cochlear outer hair cell electromotility can provide force for both low and high intensity distortion product otoacoustic emissions. Hear Res. 1998;126(1–2):67–74.
  • Mom T, Bonfils P, Gilain L, et al. Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea. J Acoust Soc Am. 2001;110(3 Pt 1):1477–1488.
  • Baiduc RR, Dhar S. Exploring optimal stimulus frequency ratio for measurement of the quadratic f2-f1 distortion product otoacoustic emission in humans. J Speech Lang Hear Res. 2018;61(7):1794–1806.
  • Whitehead ML, Lonsbury‐Martin BL, Martin GK. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. J Acoust Soc Am. 1992;91(3):1587–1607.
  • Wang Y, Fallah E, Olson ES. Adaptation of cochlear amplification to low endocochlear potential. Biophys J. 2019;116(9):1769–1786.
  • Mills DM. Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones. J Acoust Soc Am. 1997;102(1):413–429.
  • Vencovský V, Vetešník A, Dalhoff E, et al. Distributed sources as a cause of abrupt amplitude decrease in cubic distortion-product otoacoustic emissions at high stimulus intensities. J Acoust Soc Am. 2019;146(2):EL92–EL98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.