287
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The development of auditory temporal processing during the first year of life

ORCID Icon &

References

  • Rosen S. Temporal information in speech: acoustic, auditory and linguistic aspects. Philos Trans R Soc London, Ser B. 1992;336:367–373.
  • Stone MA, Füllgrabe C, Moore BC. Notionally steady background noise acts primarily as a modulation masker of speech. J Acoust Soc Am. 2012;132(1):317–326.
  • Bishop DV, Carlyon RP, Deeks JM, et al. Auditory temporal processing impairment: neither necessary nor sufficient for causing language impairment in children. J Speech Lang Hear Res. 1999;42(6):1295–1310.
  • Benasich AA, Tallal P. Infant discrimination of rapid auditory cues predicts later language impairment. Behav Brain Res. 2002;136(1):31–49.
  • Goswami U, Leong V. Speech rhythm and temporal structure: converging perspectives? Lab Phonol. 2013;4(1):67–92.
  • Abdala C. Distortion product otoacoustic emission (2f1-f2) amplitude as a function of f2/f1 frequency ratio and primary tone level separation in human adults and neonates. J Acoust Soc Am. 1996;100(6):3726–3740.
  • Bargones JY, Burns EM. Suppression tuning curves for spontaneous otoacoustic emissions in infants and adults. J Acoust Soc Am. 1988;83(5):1809–1816.
  • Morlet T, Lapillonne A, Ferber C, et al. Spontaneous otoacoustic emissions in preterm neonates: prevalence and gender effects. Hear Res. 1995;90(1–2):44–54.
  • Pujol R, Lavigne-Rebillard M. Development of neurosensory structures in the human cochlea. Acta Otolaryngol. 1992;112(2):259–264.
  • Moore JK. Maturation of human auditory cortex: implications for speech perception. Ann Otol Rhinol Laryngol Suppl. 2002;189:7–10.
  • Saffran JR, Werker JF, Werner LA. The infant’s auditory world: hearing, speech, and the beginnings of language. In: Kuhn D., Siegler R, editors. Handbook of child psychology. New York: Wiley; 2006. p. 58–108.
  • Werner LA. Infant auditory capabilities. Curr Opin Otolaryngol Head Neck Surg. 2002;10:398–402.
  • Werner LA, Fay RR, Popper AN. Human auditory development. New York: Springer; 2012.
  • Kuhl PK. Early language acquisition: cracking the speech code. Nat Rev Neurosci. 2004;5(11):831–843.
  • Svirsky MA, Robbins AM, Kirk KI, et al. Language development in profoundly deaf children with cochlear implants. Psychol Sci. 2000;11(2):153–158.
  • Niparko JK, Tobey EA, Thal DJ, et al. Spoken language development in children following cochlear implantation. JAMA. 2010;303(15):1498–1506.
  • Glasberg BR, Moore BCJ. Derivation of auditory filter shapes from notched-noise data. Hear Res. 1990;47(1–2):103–138.
  • Moore BCJ. Speech processing for the hearing-impaired: successes, failures, and implications for speech mechanisms. Speech Commun. 2003;41(1):81–91.
  • Drullman R. Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am. 1995;97(1):585–592.
  • Shannon RV, Zeng FG, Kamath V, et al. Speech recognition with primarily temporal cues. Sci. 1995;270(5234):303–304.
  • Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception. Nature. 2002;416(6876):87–90.
  • Zeng F-G, Nie K, Stickney GS, et al. Speech recognition with amplitude and frequency modulations. Proc Natl Acad Sci USA. 2005;102(7):2293–2298.
  • Johnson DH. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am. 1980;68(4):1115–1132.
  • Kiang NY, Pfeiffer RR, Warr WB, et al. Stimulus coding in the cochlear nucleus. Trans Am Otol Soc. 1965;53:35–58.
  • Palmer AR, Winter IM, Darwin CJ. The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. J Acoust Soc Am. 1986;79(1):100–113.
  • Rose JE, Brugge JF, Anderson DJ, et al. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol. 1967;30(4):769–793.
  • Joris PX, Schreiner CE, Rees A. Neural processing of amplitude-modulated sounds. Physiol Rev. 2004;84(2):541–577.
  • Joris PX, Yin TC. Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am. 1992;91(1):215–232.
  • Kale S, Heinz MG. Envelope coding in auditory nerve fibers following noise-induced hearing loss. J Assoc Res Otolaryngol. 2010;11(4):657–673.
  • Verschooten E, Verschooten E, Shamma S, et al. The upper frequency limit for the use of phase locking to code temporal fine structure in humans: a compilation of viewpoints. Hear Res. 2019;377:109–121.
  • Levi EC, Folsom RC, Dobie RA. Coherence analysis of envelope-following responses (EFRs) and frequency-following responses (FFRs) in infants and adults. Hear Res. 1995;89(1–2):21–27.
  • Levi EC, Folsom RC, Dobie RA. Amplitude-modulation following response (AMFR): effects of modulation rate, carrier frequency, age, and state. Hear Res. 1993;68(1):42–52.
  • Lemos FA, da Silva Nunes AD, de Souza Evangelista CK, et al. Frequency-following response in newborns and infants: a systematic review of acquisition parameters. J Speech Lang Hear Res. 2021;64(6):2085–2102.
  • Cone-Wesson B, Rickards F, Poulis C, et al. The auditory steady-state response: clinical observations and applications in infants and children. J Am Acad Audiol. 2002;13(05):270–282.
  • Rance G, Roper R, Symons L, et al. Hearing threshold estimation in infants using auditory steady-state responses. J Am Acad Audiol. 2005;16(5):291–300.
  • Small SA, Stapells DR. Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing. Ear Hear. 2006;27(3):219–228.
  • Van Maanen A, Stapells DR. Normal multiple auditory steady-state response thresholds to air-conducted stimuli in infants. J Am Acad Audiol. 2009;20(03):196–207.
  • Lins OG, Picton TW, Boucher BL, et al. Frequency-specific audiometry using steady-state responses. Ear Hear. 1996;17(2):81–96.
  • Rickards FW, Tan LE, Cohen LT, et al. Auditory steady-state evoked potential in newborns. Br J Audiol. 1994;28(6):327–337.
  • Savio G, Cárdenas J, Pérez Abalo M, et al. The low and high frequency auditory steady state responses mature at different rates. Audiol Neurootol. 2001;6(5):279–287.
  • Burkard RF, Eggermont JJ, Don M. Auditory evoked potentials: basic principles and clinical application. Philadelphia: Lippincott Williams & Wilkins; 2007.
  • Eggermont JJ, Salamy A. Maturational time course for the ABR in preterm and full term infants. Hear Res. 1988;33(1):35–47.
  • Salamy A. Maturation of the auditory brainstem response from birth through early childhood. J Clin Neurophysiol. 1984;1(3):293–329.
  • Wunderlich JL, Cone-Wesson BK. Maturation of CAEP in infants and children: a review. Hear Res. 2006;212(1–2):212–223.
  • Eggermont JJ, Moore JK. Morphological and functional development of the auditory nervous system. In: Werner L., Fay RR, Popper AN, editors. Springer handbook of auditory research: human auditory development. New York: Springer; 2012. pp. 61–105.
  • Gorga MP, Kaminski JR, Beauchaine KA. Auditory brain stem responses from graduates of an intensive care nursery using an insert earphone. Ear Hear. 1988;9(3):144–147.
  • Gorga MP, Kaminski JR, Beauchaine KL, et al. Auditory brainstem responses from children three months to three years of age: normal patterns of response. II. J Speech Hear Res. 1989;32(2):281–288.
  • Ponton CW, Moore JK, Eggermont JJ. Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hear. 1996;17(5):402–410.
  • Lasky RE. The effects of rate and forward masking on human adult and newborn auditory evoked brainstem response thresholds. Dev Psychobiol. 1991;24(1):51–64.
  • Colombo J, Frick JE, Ryther JS, et al. Infants’ detection of analogs of “motherese” in noise. Merrill-Palmer Q. 1995;41:104–113.
  • Colombo J, Horowitz FD. Infants’ attentional responses to frequency modulated sweeps. Child Dev. 1986;57(2):287–291.
  • Leibold LJ, Werner LA. Infant auditory sensitivity to pure tones and frequency-modulated tones. Infancy. 2007;12(2):225–233.
  • Werner LA. Observer-based approaches to human infant psychoacoustics. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC, editors. Methods in comparative psychoacoustics. Switzerland: Birkhäuser Basel; 1995. pp. 135–146.
  • Aslin RN. Discrimination of frequency transitions by human infants. J Acoust Soc Am. 1989;86(2):582–590.
  • Viemeister NF. Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am. 1979;66(5):1364–1380.
  • Walker BA, Gerhards CM, Werner LA, et al. Amplitude modulation detection and temporal modulation cutoff frequency in normal hearing infants. J Acoust Soc Am. 2019;145(6):3667–3674.
  • Hall JW, Grose JH. Development of temporal resolution in children as measured by the temporal modulation transfer function. J Acoust Soc Am. 1994;96(1):150–154.
  • Buss E, Lorenzi C, Cabrera L, et al. Amplitude modulation detection and modulation masking in school-age children and adults. J Acoust Soc Am. 2019;145(4):2565–2575.
  • Cabrera L, Varnet L, Buss E, et al. Development of temporal auditory processing in childhood: changes in efficiency rather than temporal-modulation selectivity. J Acoust Soc Am. 2019;146(4):2415–2429.
  • Werner LA, Boike K. Infants' sensitivity to broadband noise. J Acoust Soc Am. 2001;109(5 Pt 1):2103–2111.
  • Samelli AG, Schochat E. The gaps-in-noise test: gap detection thresholds in normal-hearing young adults. Int J Audiol. 2008;47(5):238–245.
  • Werner LA, Marean GC, Halpin CF, et al. Infant auditory temporal acuity: gap detection. Child Dev. 1992;63(2):260–272.
  • Trehub SE, Schneider BA, Henderson JL. Gap detection in infants, children, and adults. J Acoust Soc Am. 1995;98(5 Pt 1):2532–2541.
  • Trainor LJ, Samuel SS, Desjardins RN, et al. Measuring temporal resolution in infants using mismatch negativity. Neuroreport. 2001;12(11):2443–2448.
  • Werner LA, Folsom RC, Mancl LR, et al. Human auditory brainstem response to temporal gaps in noise. J Speech Lang Hear Res. 2001;44(4):737–750.
  • Werner LA. Forward masking among infant and adult listeners. J Acoust Soc Am. 1999;105(4):2445–2453.
  • Karzon RG, Nicholas JG. Syllabic pitch perception in 2- to 3-month-old infants. Percept Psychophys. 1989;45(1):10–14.
  • Nazzi T, Floccia C, Bertoncini J. Discrimination of pitch contours by neonates. Infant Behav Dev. 1998;21(4):779–784.
  • Trainor LJ, Zacharias CA. Infants prefer higher-pitched singing. Infant Behav Dev. 1998;21(4):799–805.
  • Mattock K, Molnar M, Polka L, et al. The developmental course of lexical tone perception in the first year of life. Cognition. 2008;106(3):1367–1381.
  • Plantinga J, Trainor LJ. Melody recognition by two-month-old infants. J Acoust Soc Am. 2009;125(2):EL58–EL62.
  • Lau BK, Werner LA. Perception of missing fundamental pitch by 3- and 4-month-old human infants. J Acoust Soc Am. 2012;132(6):3874–3882.
  • Lau BK, Lalonde K, Oster M-M, et al. Infant pitch perception: missing fundamental melody discrimination. J Acoust Soc Am. 2017;141(1):65–72.
  • Lau BK, Oxenham AJ, Werner LA. Infant pitch and timbre discrimination in the presence of variation in the other dimension. J Assoc Res Otolaryngol. 2021;22(6):693–702.
  • Clarkson MG, Rogers EC. Infants require low-frequency energy to hear the pitch of the missing fundamental. J Acoust Soc Am. 1995;98(1):148–154.
  • Butler BE, Folland NA, Trainor LJ. Development of pitch processing: infants’ discrimination of iterated rippled noise stimuli with unresolved spectral content. Hear Res. 2013;304:1–6.
  • Lau BK, Werner LA. Perception of the pitch of unresolved harmonics by 3- and 7-month-old human infants. J Acoust Soc Am. 2014;136(2):760–767.
  • Ortiz Barajas MC, Guevara R, Gervain J. The origins and development of speech envelope tracking during the first months of life. Dev Cogn Neurosci. 2021;48:100915.
  • Kalashnikova M, Peter V, Di Liberto GM, et al. Infant-directed speech facilitates seven-month-old infants' cortical tracking of speech. Sci Rep. 2018;8(1):13745.
  • Telkemeyer S, Rossi S, Koch SP, et al. Sensitivity of newborn auditory cortex to the temporal structure of sounds. J Neurosci. 2009;29(47):14726–14733.
  • Cabrera L, Gervain J. Speech perception at birth: the brain encodes fast and slow temporal information. Sci Adv. 2020;6(30): eaba7830.
  • Cabrera L, Bertoncini J, Lorenzi C. Perception of speech modulation cues by 6-month-old infants. J Speech Lang Hear Res. 2013;56(6):1733–1744.
  • Cabrera L, Lorenzi C, Bertoncini J. Infants discriminate voicing and place of articulation with reduced spectral and temporal modulation cues. J Speech Lang Hear Res. 2015;58(3):1033–1042.
  • Cabrera L, Werner L. Infants' and adults' use of temporal cues in consonant discrimination. Ear Hear. 2017;38(4):497–506.
  • Shannon RV. Advances in auditory prostheses. Curr Opin Neurol. 2012;25(1):61–66.
  • Shannon RV, Fu Q-J, Galvin J, et al. Speech perception with cochlear implants. In: Zeng F-G, Popper AN, Fay RR, editors. Springer handbook of auditory research: cochlear implants: auditory prostheses and electric hearing. New York: Springer; 2004. pp. 334–376.
  • Bouton S, Serniclaes W, Bertoncini J, et al. Perception of speech features by French-speaking children with cochlear implants. J Speech Lang Hear Res. 2012;55(1):139–153.
  • Miyamoto RT, Houston DM, Kirk KI, et al. Language development in deaf infants following cochlear implantation. Acta Otolaryngol. 2003;123(2):241–244.
  • Connor CM, Zwolan TA. Examining multiple sources of influence on the reading comprehension skills of children who use cochlear implants. J Speech Lang Hear Res. 2004;47(3):509–525.
  • Dettman SJ, Pinder D, Briggs RJ, et al. Communication development in children who receive the cochlear implant younger than 12 months: risks versus benefits. Ear Hear. 2007;28(2 Suppl):11S–18S.
  • Nicholas JG, Geers AE. Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. J Speech Lang Hear Res. 2007;50(4):1048–1062.
  • Richter B, Eißele S, Laszig R, et al. Receptive and expressive language skills of 106 children with a minimum of 2 years’ experience in hearing with a cochlear implant. Int J Pediatr Otorhinolaryngol. 2002;64(2):111–125.
  • Svirsky MA, Teoh S-W, Neuburger H. Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation. Audiol Neurootol. 2004;9(4):224–233.
  • Tomblin JB, Barker BA, Spencer LJ, et al. The effect of age at cochlear implant initial stimulation on expressive language growth in infants and toddlers. J Speech Lang Hear Res. 2005;48(4):853–867.
  • Park M-H, Won JH, Horn DL, et al. Acoustic temporal modulation detection in normal-hearing and cochlear implanted listeners: effects of hearing mechanism and development. J Assoc Res Otolaryngol. 2015;16(3):389–399.
  • Cazals Y, Pelizzone M, Saudan O, et al. Low-pass filtering in amplitude modulation detection associated with vowel and consonant identification in subjects with cochlear implants. J Acoust Soc Am. 1994;96(4):2048–2054.
  • Fu Q-J. Temporal processing and speech recognition in cochlear implant users. Neuroreport. 2002;13(13):1635–1639.
  • Gnansia D, Lazard DS, Léger AC, et al. Role of slow temporal modulations in speech identification for cochlear implant users. Int J Audiol. 2014;53(1):48–54.
  • Werner LA. Issues in human auditory development. J Commun Disord. 2007;40(4):275–283.
  • Buss E, Hall JW, Grose JH, et al. Development of adult-like performance in backward, simultaneous, and forward masking. J Speech Lang Hear Res. 1999;42(4):844–849.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.