4,266
Views
7
CrossRef citations to date
0
Altmetric
Full Length Articles

Mechanical and thermal properties of porous yttria-stabilized zirconia

, &
Pages 20-30 | Received 16 Jul 2018, Accepted 30 Oct 2018, Published online: 04 Dec 2018

References

  • Ryshkewitch E. Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc. 1953;36:65–68.
  • Hirata Y, Shimonosono T, Sameshima T, et al. Compressive mechanical properties of porous alumina compacts. Ceram Int. 2014;40:2315–2322.
  • Hirata Y, Shimonosono T, Sameshima S, et al. Sintering of alumina powder compacts and their compressive mechanical properties. Ceram Int. 2015;41:11449–11455.
  • Hirata Y, Fujita H, Shimonosono T. Compressive mechanical properties of partially sintered porous alumina of bimodal particle size system. Ceram Int. 2017;43:1895–1903.
  • Hirata Y, Takehara K, Shimonosono T. Analyses of Young’s modulus and thermal expansion coefficient of sintered porous alumina compact. Ceram Int. 2017;43:12321–12327.
  • Hirata Y. Representation of thermal conductivity of solid material with particulate inclusion. Ceram Int. 2009;35:2921–2926.
  • Hirata Y, Kinoshita Y, Shimonosono T, et al. Theoretical and experimental analyses of thermal properties of porous polycrystalline mullite. Ceram Int. 2017;43:9973–9978.
  • Maxwell JC. A treatise on electricity and magnetism. Oxford, UK: Clarendon Press; 1904.
  • Schlichting KW, Padture NP, Klemens PG. Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci. 2001;36:3003–3010.
  • Hu L, Wang C, Huang Y. Porous yttria-stabilized zirconia ceramics with ultra-low thermal conductivity. J Mater Sci. 2010;45:3242–3246.
  • Pia G, Sanna U. An intermingled fractal units model to evaluate pore size distribution influence on thermal conductivity values in porous materials. Appl Therm Eng. 2014;65:330–336.
  • Pia G. High porous yttria-stabilized zirconia with aligned pore channels: morphology directionality influence on heat transfer. Ceram Int. 2016;42:11674–11681.
  • Ueno T, Hirata Y, Shimonosono T. Analysis of compressive deformation behavior of wet powder compacts of nanometer-sized yttria-stabilized zirconia particles. Ceram Int. 2016;42:1926–1932.
  • Hirata Y, Matsushima K, Matsunaga N, et al. Viscoelastic properties of flocculated alumina suspensions during pressure filtration. J Ceram Soc Jpn. 2010;118:977–982.
  • Hirata Y, Fukunaga Y, Matsunaga N, et al. Influence of pressure on filtration of aqueous alumina suspensions. Ceram Int. 2013;39:3547–3554.
  • Shimonosono T, Ikeyama S, Hirata Y, et al. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics. J Asian Ceram Soc. 2014;2:422–428.
  • Lankford J. Deformation and fracture of yttria-stabilized zirconia single crystals. J Mater Sci. 1986;21:1981–1989.
  • Kondoh J, Shiota H, Kawachi K, et al. Yttria concentration dependence of tensile strength in yttria-stabilized zirconia. J Alloy Compd. 2004;365:253–258.
  • Matsunaga N, Hidaka N, Sameshima S, et al. Mechanical properties of SiC processed with nanometer-sized powder and polytitanocarbosilane. Key Eng Mater. 2007;352:49–52.
  • Matsunaga N, Nakahama K, Hirata Y, et al. Enhancement of strength of SiC by heat-treatment in air. J Ceram Proc Res. 2009;10:319–324.
  • Hirata Y, Matsunaga N, Hidaka N, et al. Improvement of Strength, Weibull modulus and damage tolerance of SiC. Mater Sci Forum. 2007;561–565:489–494.
  • Deng Z-Y, Fukasawa T, Ando M, et al. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of alumina hydroxide. J Am Ceram Soc. 2001;84:2638–2644.
  • Giraud S, Canel J. Young’s modulus of some SOFCs materials as a function of temperature. J Eur Ceram Soc. 2008;28:77–83.
  • Hata K, editor. Chemical handbook, basic part II. 3rd ed. Tokyo, Japan: Maruzen; 1984.
  • Itoh S, Hirata Y, Shimonosono T, et al. Theoretical and experimental analyses of thermal conductivity of the alumina–mullite system. J Eur Ceram Soc. 2015;35:605–612.