1,156
Views
1
CrossRef citations to date
0
Altmetric
Full Length Articles

In vitro evaluation of doxorubicin-eluting porous titania microspheres for transcatheter arterial chemoembolization

ORCID Icon, , , , &
Pages 10-20 | Received 24 Jul 2019, Accepted 02 Nov 2019, Published online: 26 Nov 2019

References

  • Ferlay J, Shin HR, Bray FD, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–2917.
  • Kettenbach J, Stadler A, Katzler IV, et al. Drug-loaded microspheres for the treatment of liver cancer: review of current results. Cardiovasc Intervent Radiol. 2008;31:468–476.
  • Takayasu K. Transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma: recent progression and perspective. Oncology. 2013;84:28–33.
  • Brown KT, Nevins AB, Getrajdman GI, et al. Particle embolization for hepatocellular carcinoma. J Vasc Interv Radiol. 1998;9:822–828.
  • Laurent A, Wassef M, Chapot R, et al. Location of vessel occlusion of calibrated tris-acryl gelatin microspheres for tumor and arteriovenous malformation embolization. J Vasc Interv Radiol. 2004;15:491–496.
  • Lewis AL, Gonzalez MV, Lloyd AW, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol. 2006;17:335–342.
  • Grosso M, Vignali C, Quaretti P, et al. Transarterial chemoembolization for hepatocellular carcinoma with drug-eluting microspheres: preliminary results from an Italian multicentre study. Cardiovasc Intervent Radiol. 2008;31:141–1149.
  • Tanaka T, Nishiofuku H, Hukuoka Y, et al. Pharmacokinetics and antitumor efficacy of chemoembolization using 40 µm irinotecan-loaded microspheres in a rabbit liver tumor model. J Vasc Interv Radiol. 2014;25:1037–1044.
  • Lammer J, Malagari K, Vogl T, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33:41–52.
  • Duran R, Sharma K, Dreher MR, et al. A novel inherently radiopaque bead for transarterial embolization to treat liver cancer - a pre-clinical study. Theranostics. 2016;6:28–39.
  • Li Z, Miyazaki T, Kawashita M. Preparation and in vitro apatite-forming ability of porous and non-porous titania microspheres. J Ceram Soc Japan. 2013;121:782–787.
  • Kawashita M, Tanaka Y, Ueno S, et al. In vitro apatite formation and drug loading/release of porous TiO2 microspheres prepared by sol-gel processing with different SiO2 nanoparticle contents. Mater Sci Engin C. 2015;50:317–323.
  • Liu G, Kawashita M, Li Z, et al. Sol-gel synthesis of magnetic TiO2 microspheres and characterization of their in vitro heating ability for hyperthermia treatment of cancer. J Sol-Gel Sci Tech. 2015;75:90–97.
  • Kanetaka H, Liu G, Li Z, et al. TiO2 microspheres containing magnetic nanoparticles for intra-arterial hyperthermia. J Biomed Mater Res Part B. 2017;105:2308–2314.
  • Li Z, Kawashita M, Kudo T, et al. Sol-gel synthesis, characterization and in vitro compatibility evaluation of iron nanoparticle encapsulating-silica microspheres for hyperthermia of cancer. J Mater Sci Mater Med. 2012;23:2461–2469.
  • Xu C, Houck JR, Fan W, et al. Simultaneous isolation of DNA and RNA from the same cell population obtained by laser capture microdissection for genome and transcriptome profiling. J Mol Diagn. 2008;10:129–134.
  • Bertoluzza A, Fagnano C, Morelli MA. Raman and infrared spectra on silica gel evolving toward glass. J Non-Cryst Solids. 1982;48:117–128.
  • Liu Z, Davis RJ. Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J Phys Chem. 1994;98:1253–1261.
  • Wan M, Li W, Long Y, et al. Electrochemical determination of tryptophan based on Si-doped nano-TiO2 modified glassy carbon electrode. Anal Methods. 2012;4:2860–2865.
  • Dutoit DCM, Schneider M, Baiker A. Titania-silica mixed oxides I. influence of sol-gel and drying conditions on structural properties. J Catal. 1995;153:165–176.
  • Langer RS, Peppas NA. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials. 1981;2:201–214.
  • Paul DE. Elaborations on the Higuchi model for drug delivery. Int J Pharm. 2011;418:13–17.
  • Ye M, Zheng D, Mengye Wang M, et al. Hierarchically structured microspheres for high-efficiency rutile TiO2-based dye-sensitized solar cells. ACS Appl Mater Interfaces. 2014;6:2893−290.
  • Suyama S, Kato A. The inhibitory effect of SiO2 on the anatase-rutile transition of TiO2. J Ceram Soc Japan. 1978;86:119–125.
  • Okada K, Yamamoto N, Kameshima Y, et al. Effect of silica additive on the anatase-to-rutile phase transition. J Am Ceram Soc. 2001;84:1591–1596.
  • Fu X, Clark LA, Yang Q, et al. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ Sci Technol. 1996;30:647–653.
  • Lewis AL, Gonzalez MV, Leppard SW, et al. Doxorubicin eluting beads-1: effects of drug loading on bead characteristics and drug distribution. J Mater Sci Mater Med. 2007;18:1691–1699.
  • Chen Y, Wan Y, Wang Y, et al. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011;6:2321–2326.
  • Barick KC, Nigam S, Bahadur D. Nanoscale assembly of mesoporous ZnO: a potential drug carrier. J Mater Chem. 2010;20:6446–6452.
  • Gonzalez MV, Tang Y, Phillips GJ, et al. Doxorubicin eluting beads-2: methods for evaluating drug elution and in-vitro: in-vivocorrelation. J Mater Sci Mater Med. 2008;19:767–775.
  • Wu C, Chang J, Ni S, et al. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res Part A. 2006;76A:73–80.