1,951
Views
6
CrossRef citations to date
0
Altmetric
Full Length Article

Multiferroic and magnetodielectric properties of (1-x)KNN-xCMgFO ceramic-based composites

, , &
Pages 1027-1035 | Received 13 May 2020, Accepted 26 Jul 2020, Published online: 23 Aug 2020

References

  • Scott JF. Applications of magnetoelectrics. J Mater Chem. 2012;22(11):4567–4574.
  • Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics. 1994;162(1):317–338.
  • Debye P. Comment on some new experiments on a magneto-electrical directing effect. Zeitschrift für Physik. 1926;36(4):300–301.
  • Wang Y, Hu J, Lin Y, et al. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010;2(2):61–68.
  • Nan CW, Bichurin MI, Dong S, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys. 2008;103(3):1.
  • Nan CW. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B. 1994;50(9):6082.
  • Ortega N, Bhattacharya P, Katiyar RS, et al. Multiferroic properties of Pb(Zr,Ti)O3∕ CoFe2O4 composite thin films. J Appl Phys. 2006;100(12):126105.
  • Chunyue L, Xu R, Gao R, et al. Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4–PbZr0.52Ti0.48O3 composite ceramics. Mater Chem Phys. 2020;249:123144.
  • Lopatin S, Lopatina I, Lisnevskaya I. Magnetoelectric PZT/ferrite composite material. Ferroelectrics. 1994;162(1):63–68.
  • Bozorth RM, Walker JG. Magnetostriction of single crystals of cobalt and nickel ferrites. Phys Rev. 1952;88(5):1209.
  • Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram. 2007;19(1):113–126.
  • Zheng H, Wang J, Lofland SE, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science. 2004;303(5658):661–663.
  • Upadhyay SK, Reddy VR, Lakshmi N. Study of (1−x)BaTiO3–xNi0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites. J Asian Ceram Soc. 2013;1(4):346–350.
  • Zhang RF, Deng CY, Ren L, et al. Ferroelectric, ferromagnetic, and magnetoelectric properties of multiferroic Ni0.5Zn0.5Fe2O4–BaTiO3 composite ceramics. J Electron Mater. 2014;43(4):1043–1047.
  • He S, Liu G, Xu J, et al. Magnetodielectric effect in lead-free multiferroic CoFe2O4/K0.5Na0.5NbO3 bilayers. Mater Lett. 2012;89:159–162.
  • Sowmya NS, Srinivas A, Reddy KV, et al. Magnetoelectric coupling studies on (x)(0.5BZT-0.5BCT)-(100-x)NiFe2O4 [x=90−70wt%] particulate composite. Ceramic Int. 2017;43(2):2523–2528.
  • Gao R, Qin X, Zhang Q, et al. A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics. Mater Chem Phys. 2019;232:428–437.
  • Shamim MK, Sharma S, Choudhary RJ. Role of ferrite phase on the structure, dielectric and magnetic properties of (1-x)KNNL/xNFO composites ceramics. J Magn Magn Mater. 2019;469:1–7.
  • Shamim MK, Sharma S, Choudhary RJ. Lead-free (K, Na, Li) NbO3/NiFe2O4 thin films by pulsed laser deposition: structure, dielectric, magnetic and magnetodielectric behavior. J Alloy Compd. 2019;794:534–541.
  • Shamim MK, Sharma S, Choudhary RJ. Structure, electrical and magnetic properties of Co0.8Zn0.2Fe2O4/(K0.47Na0.47Li0.6)NbO3 bilayered thin films grown by pulsed laser deposition. J Appl Phys. 2019;126(13):134104.
  • Fu J, Zuo R, Xu Z. High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: contribution of nanodomains. Appl Phys Lett. 2011;99(6):062901.
  • Anantharamaiah PN, Joy PA. Enhancing the strain sensitivity of CoFe2O4 at low magnetic fields without affecting the magnetostriction coefficient by substitution of small amounts of Mg for Fe. Phys Chem Chem Phys. 2016;18(15):10516–10527.
  • Birol H, Damjanovic D, Setter N. Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Eur Ceram Soc. 2006;26(6):861–866.
  • Fisher JG, Kang SJ. Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. J Eur Ceram Soc. 2009;29(12):2581–2588.
  • Kurian M, Thankachan S, Nair DS, et al. Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesized by wet chemical methods. J Adv Ceram. 2015;4(3):199–205.
  • Ivliev MP, Raevskaya SI, Raevskiĭ IP, et al. Formation of ferroelectric phases in KNbO3 and other niobates with perovskite structure. Phys Solid State. 2007;49(4):769–779.
  • Megaw HD. Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Crystallogr. 1952;5(6):739–749.
  • Shalini K, Giridharan NV. Structural, dielectric and magnetic properties of K0.5Na0.5NbO3 and K0.5Na0.5Nb0.975Co0.025O3 lead free ceramics. Ferroelectrics. 2017;518(1):52–58.
  • Lekha CC, Kumar AS, Vivek S, et al. Room temperature magnetoelectric properties of lead-free alkaline niobate based particulate composites. Ceram Int. 2019;45(7):8115–8122.
  • Smit J, Wijn HP. Physical properties of ferrites. In: Advances in electronics and electron physics. Vol. 6. Academic Press, New York; 1954. p. 69–136.
  • Xue Y, Xu R, Wang Z, et al. Effect of magnetic phase on structural and multiferroic properties of Ni1−xZnxFe2O4/BaTiO3 composite ceramics. J Electron Mater. 2019;48(8):4806–4817.
  • Chen W, Wang ZH, Zhu W, et al. Ferromagnetic, ferroelectric and dielectric properties of Pb (Zr0.53Ti0.47)O3/CoFe2O4 multiferroic composite thick films. J Phys D Appl Phys. 2009;42(7):075421.
  • Bammannavar BK, Naik LR. Electrical properties and magnetoelectric effect in (x)Ni0.5Zn0.5Fe2O4+(1−x)BPZT composites. Smart Mater Struct. 2009;18(8):085013.
  • Gao R, Qin X, Zhang Q, et al. Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J Alloy Compound. 2019;795:501–512.
  • Wagner KW. On the theory of imperfect dielectrics. Ann Phys. 1913;345(5):817–855.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev. 1951;83(1):121.
  • Ciomaga CE, Neagu AM, Pop MV, et al. Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J Appl Phys. 2013;113(7):074103.
  • Xu R, Wang Z, Gao R, et al. Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J Mater Sci Mater Electron. 2018;29(19):16226–16237.
  • Gao R, Zhang Q, Xu Z, et al. A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos Part B-Eng. 2019;166:204–212.
  • Kumar Y, Yadav KL, Shah J, et al. Study of structural, dielectric, electric, magnetic and magnetoelectric properties of K0.5Na0.5NbO3−Ni0.2Co0.8Fe2O4 composites. Ceram Int. 2017;43(16):13438–13446.
  • Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3‐Based Lead‐Free Piezoceramics: fundamental Aspects, Processing Technologies, and Remaining Challenges. J Am Ceram Soc. 2013;96(12):3677–3696.
  • Rani J, Yadav KL, Prakash S. Dielectric and magnetic properties of xCoFe2O4–(1− x)[0.5 Ba (Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3] composites. Mater Res Bull. 2014;60:367–375.
  • Catalan G. Magnetocapacitance without magnetoelectric coupling. Appl Phys Lett. 2006;88(10):102902.
  • Pradhan DK, Puli VS, Kumari S, et al. Studies of phase transitions and magnetoelectric coupling in PFN-CZFO multiferroic composites. J Phys Chem C. 2016;120(3):1936–1944.
  • Rakhikrishna R, Isaac J, Philip J. Magneto-electric characterization of x(Na0.5K0.5)0.94Li 0.06NbO3-(1-x)NiFe2O4 composite ceramics. J Electroceram. 2015;35(1–4):120–128.
  • Samad R, Want B. Magnetic field control of electric properties in gadolinium doped BaTiO3–CoFe2O4 particulate multiferroic composites. Mater Res Express. 2019;6(6):066310.
  • Palkar VR, Kundaliya DC, Malik SK, et al. Magnetoelectricity at room temperature in the Bi0.9−xTbxLa0.1FeO3 system. Phys Rev B. 2004;69(21):212102.