939
Views
3
CrossRef citations to date
0
Altmetric
Full Length Article

Structure and electrical properties of [(Na0.825K0.175)0.5Bi0.5]1+xTiO3 piezoceramics with A-site nonstoichiometry

, &
Pages 1036-1042 | Received 03 Mar 2020, Accepted 02 Aug 2020, Published online: 18 Aug 2020

References

  • Smolenskii GA, Isupov VA, Agranovskaya AI, et al. Ferroelectrics with diffuse phase transitions. Soviet Phys Solid State. 1961;2:2584.
  • Takenaka T, Sakata K. Dielectric, piezoelectric and pyroelectric properties of (BiNa)1/2TiO3- based ceramics. Ferroelectrics. 1989;95(1):153–156.
  • Tadashi T, Kei-ichi M, Koichiro S. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys. 1991;30(9S):2236–2239.
  • Hajime N. and Tadashi T. Lead-free piezoelectric ceramics of (NaBi)0.5TiO3-1/2(Bi2O3·Sc2O3) system. Jpn J Appl Phys. 1997;36(1):6055–6057.
  • Sasaki A, Chiba T, Mamiya Y, et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems. Jpn J Appl Phys. 1999;38(9S):5564.
  • Lin D, Xiao D, Zhu J, et al. Synthesis and piezoelectric properties of lead-free piezoelectric [Bi0.5(Na1−x−yKxLiy)0.5]TiO3 ceramics. Mater Lett. 2004;58(5):615–618.
  • Zeng WD, Li QN, Zhou CR, et al. A new insight into structural complexity in ferroelectric ceramics. J Adv Ceram. 2017;6(3):262–268.
  • Takenaka T, Okuda T, Takegahara K. Lead-free piezoelectric ceramics based on (Bi1/2Na1/2)TiO3-NaNbO3. Ferroelectrics. 1997;196(1–4):495–498.
  • Hajime N, Masaki Y, Yoichi M, et al. Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn J Appl Phys. 2003;42(12R):7401–7403.
  • Xu Q, Lanagan MT, Luo W, et al. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. J Eur Ceram Soc. 2016;36(10):2469–2477. .
  • Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr. Mater Lett. 2004;58(29):3831–3835.
  • Guo K, Sharifzadeh Mirshekarloo M, Lin M, et al. Microstructure and piezoelectric properties of thermal sprayed Bi0.5(Na0.70K0.20Li0.10)0.5TiO3 ceramic coatings. Ceram Int. 2019;45(3):3570–3573.
  • Liao Y, Xiao D, Lin D, et al. Synthesis and properties of Bi0.5(Na1−x−yKxAgy)0.5TiO3 lead-free piezoelectric ceramics. Ceram Int. 2007;33(8):1445–1448.
  • Shi X, Kumar N, Hoffman M. Electric field-temperature phase diagrams for (Bi1/2Na1/2)TiO3-BaTiO3-(K1/2Na1/2)NbO3 relaxor ceramics. J Mater Chem C. 2018;6(45):12224–12233.
  • Muneeswaran M, Choi BC, Chang SH, et al. Effect of dysprosium doping on structural and vibrational properties of lead-free (Na0.7K0.3)0.5Bi0.5TiO3 ferroelectric ceramics. Ceram Int. 2017;43(16):13696–13701.
  • Turki O, Slimani A, Seveyrat L, et al. Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics. J Appl Phys. 2016;120(5):054102.
  • Chen X, Liao Y, Mao L, et al. Microstructure and piezoelectric properties of Li-doped Bi0.5(Na0.825K0.175)0.5TiO3 piezoelectric ceramics. Phys Status Solidi A. 2009;206(7):1616–1619.
  • Liu L, Zhu M, Hou Y, et al. Abnormal piezoelectric and dielectric behavior of 0.92Na0.5Bi0.5TiO3-0.08BaTiO3 induced by La doping. J Mater Res. 2011;22(5):1188–1192.
  • Zuo R, Su S, Wu Y, et al. Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics. Mater Chem Phys. 2008;110(2):311–315.
  • Sung YS, Kim JM, Cho JH, et al. Effects of Bi nonstoichiometry in (Bi0.5+xNa)TiO3 ceramics. Appl Phys Lett. 2011;98(1):012902.
  • Sung YS, Kim JM, Cho JH, et al. Effects of Na nonstoichiometry in (Bi0.5Na0.5+x)TiO3 ceramics. Appl Phys Lett. 2010;96(2):022901.
  • Wu Y, Wang X, Zhong C, et al. Effect of Na/K excess on the electrical properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 thin films prepared by sol–gel processing. Thin Solid Films. 2011;519(15):4798–4803.
  • Prasertpalichat S, Schmidt W, Cann DP. Effects of A-site nonstoichiometry on oxide ion conduction in 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics. J Adv Dielectr. 2016;6:2.
  • Chu B-J, Chen D-R, Li G-R, et al. Electrical properties of Na1/2Bi1/2TiO3–BaTiO3 ceramics. J Eur Ceram Soc. 2002;22(13):2115–2121.
  • Ni F, Luo L, Pan X, et al. Effects of A-site vacancy on the electrical properties in lead-free non-stoichiometric ceramics Bi0.5+x(Na0.82K0.18)0.5−3xTiO3 and Bi0.5+y(Na0.82K0.18)0.5TiO3. J Alloys Compd. 2012;541:150–156.
  • Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71.
  • Lutterotti L, Bortolotti M. Object oriented programming and fast computation techniques in MAUD, a program for powder diffraction analysis written in java. IUCr Compcomm Newsletter. 2003;1:43–50.
  • Lutterotti L, Matthies S, Wenk H. MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter CPD. 1999;21:14–15.
  • Lutterotti L, Matthies S, Wenk H, MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld texture analysis and more. pp. 1599 In Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12). Vol. 1,  Ottawa, Canada.
  • Onoe M, Jumonji H. Useful formulas for piezoelectric ceramic resonators and their application to measurement of parameters. J Acoust Soc Am. 1967;41(4B):974–980.
  • Veera Gajendra M, Babu SM, Abdul Kader M, et al. Enhanced piezoelectric constant and remnant polarisation in K-compensated sodium potassium bismuth titanate. Mater Lett. 2015;146:81–83.
  • Seo I-T, Steiner S, Frömling T. The effect of A site non-stoichiometry on 0.94(NayBix)TiO3-0.06BaTiO3. J Eur Ceram Soc. 2017;37(4):1429–1436.
  • Seifert KTP, Jo W, Rödel J. Temperature-insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics. J Am Ceram Soc. 2010;93(5):1392–1396.
  • Jones GO, Thomas PA. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallographica Section B. 2002;58(2):168–178.
  • Jones GO, Thomas PA. The tetragonal phase of Na0.5Bi0.5TiO3 - a new variant of the perovskite structure. Acta Crystallographica Section B. 2000;56(3):426–430.
  • Lei N, Zhu M, Yang P, et al. Effect of lattice occupation behavior of Li+ cations on microstructure and electrical properties of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys. 2011;109(5):054102.
  • Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751–767.
  • Akram F, Ahmed Malik R, Hussain A, et al. Temperature stable dielectric properties of lead-free BiFeO3–BaTiO3 modified with LiTaO3 ceramics. Mater Lett. 2018;217:16–19.
  • Wang B, Luo L, Ni F, et al. Piezoelectric and ferroelectric properties of (Bi1−xNa0.8K0.2Lax)0.5TiO3 lead-free ceramics. J Alloys Compd. 2012;526:79–84.
  • Lee YC, Huang YL. Effects of CuO doping on the microstructural and dielectric properties of Ba0. 6Sr0. 4TiO3 ceramics. J Am Ceram Soc. 2009;92(11):2661–2667.
  • Qiao X-S, Chen X-M, Lian H-L, et al. Microstructure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J Am Ceram Soc. 2016;99(1):198–205.
  • Jones GO, Kreisel J, Thomas PA. A structural study of the (Na1−xKx)0.5Bi0.5TiO3 perovskite series as a function of substitution (x) and temperature. Powder Diffr. 2012;17(4):301–319.
  • Sung YS, Baik S, Lee JH, et al. Enhanced piezoelectric properties of (Na0.5+y+zK0.5−y)(Nb1−xTax)O3 ceramics. Appl Phys Lett. 2012;101(1):012902. .
  • Zhao Y, Xu Z, Chu R, et al. Improved piezoelectricity and high strain response of (1 − x)(0.948K0.5Na0.5NbO3 − 0.052LiSbO3) − xBi2O3 ceramics. J Mater Sci Mater Electron. 2017;28(2):1211–1216.
  • Kazushige Y, Yuji H, Hajime N, et al. Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3 –(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys. 2006;45(5S):4493.
  • Ma C, Tan X, Dul’kin E, et al. Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys. 2010;108(10):104105.
  • Akram F, Malik RA, Song TK, et al. Thermally-stable high dielectric properties of (1–x)(0.65Bi1.05FeO3–0.35BaTiO3)–xBiGaO3 piezoceramics. J Eur Ceram Soc. 2019;39(7):2304–2309.
  • Akram F, Kim J, Khan SA, et al. Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3–BaTiO3-based ceramics. J Alloys Compd. 2020;818:152878.
  • Sakata K, Takenaka T, Naitou Y. Phase-relations, dielectric and piezoelectric properties of ceramics in the system (Bi0.5Na0.5)TiO3-PbTiO3. Ferroelectrics. 1992;131(1–4):219–226.
  • Sapper E, Schaab S, Jo W, et al. Influence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO3. J Appl Phys. 2012;111(1):014105.