1,524
Views
15
CrossRef citations to date
0
Altmetric
Full Length Article

High-temperature toughening in ternary medium-entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark-plasma sintering

ORCID Icon, , , , & ORCID Icon
Pages 1262-1270 | Received 16 Jul 2020, Accepted 19 Oct 2020, Published online: 13 Nov 2020

References

  • Fahrenholtz WG, Wuchina EJ, Lee WE, et al. editor. Ultra-high temperature ceramics. Hoboken (NJ): Wiley; 2014.
  • Zubarev PV. High-temperature strength of the interstitial phases. Moscow (USSR): Metallurgiya; 1985. ( [in Russian]).
  • Mroz C. Processing TiZrC and TiZrB2. Am Ceram Soc Bull. 1994;73:78–81.
  • Andrievski RA, Spivak II. Strength of refractory compounds. Chelyabinsk (USSR): Metallurgiya; 1989. ( [in Russian]).
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5:295–309.
  • Castle E, Csanadi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep. 2018;8(1):8609.
  • Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018;9:4980.
  • Demirskyi D, Borodianska H, Suzuki TS, et al. High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC. Scr Mater. 2019;164:12–16.
  • Wei X-F, Liu J-X, Li F, et al. High entropy carbide ceramics from different starting materials. J Eur Ceram Soc. 2019;39(10):2989–2994.
  • Wang K, Chen L, Xu C, et al. Microstructure and mechanical properties of (TiZrNbTaMo)C high-entropy ceramic. J Mater Sci Technol. 2020;39(15):99–105.
  • Sedegov A, Vorotilo S, Tsybulin V, et al. Synthesis and study of high-entropy ceramics based on the carbides of refractory metals. IOP Conf Series. 2019;558:012043.
  • Feng L, Fahrenholtz WG, Hilmas GE. Low‐temperature sintering of single‐phase, high‐entropy carbide ceramics. J Am Ceram Soc. 2019;102(12):7217–7224.
  • Yan XL, Contantin L, Lu YF, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramics with low thermal conductivity. J Am Ceram Soc. 2018;101(10):4486–4491.
  • Ye BL, Wen TQ, Huang KH, et al. First‐principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high‐entropy ceramic. J Am Ceram Soc. 2019;102:4344–4352.
  • Borgh I, Hedström P, Blomqvist A, et al. Synthesis and phase separation of (Ti,Zr)C. Acta Mater. 2014;66:209–218.
  • Li Y, Katsui H, Goto T. Microstructure evolution of (Ti,Zr)C solid solution at the initial stage of phase decomposition. Mater Today Proc. 2017;4:11449–11512.
  • Murray P, Weston JE. The 1700 °C isothermal section of the pseudoternary system TiC-ZrC-HfC. J Less Common Met. 1981;81(1):173–179.
  • Kieffer R, Benesovsky F. Hartstoffe. Wien: Springer; 1963. ( [in German]).
  • Ye B, Wen T, Liu D, et al. Oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics at 1073-1473 K in air. Corros Sci. 2019;153:327–332.
  • Cullity BD. Elements of X-Ray Diffraction. 2nd ed. Reading (MA): Addison-Wesley Publishing Inc; 1978.
  • Demirskyi D, Vasylkiv O. Analysis of the high-temperature flexural strength behavior of B4C–TaB2 eutectic composites produced by in situ spark plasma sintering. Mater Sci Eng A. 2017;697:71–78.
  • Demirskyi D, Solodkyi I, Nishimura T, et al. High‐temperature strength and plastic deformation behavior of niobium diboride consolidated by spark plasma sintering. J Am Ceram Soc. 2017;100(11):5295–5305.
  • Demirskyi D, Vaslykiv O. Spark plasma sintering and high-temperature strength of B6O–TaB2 ceramics. J Eur Ceram Soc. 2017;37(8):3009–3014.
  • Sciti D, Guicciardi S, Nygren M. Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering. J Am Ceram Soc. 2008;91:1433–1440.
  • Cedillos-Barraza O, Grasso S, Al Nasiri N, et al. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering. J Eur Ceram Soc. 2016;36(7):1539–1548.
  • Acicbe RB, Goller G. Densification behavior and mechanical properties of spark plasma‐sintered ZrC–TiC and ZrC–TiC–CNT composites. J Mater Sci. 2013;48(6):2388–2393.
  • Cheng L, Xie Z, Liu G, et al. Densification and mechanical properties of TiC by SPS‐effects of holding time, sintering temperature and pressure condition. J Eur Ceram Soc. 2012;32(12):3399–33406.
  • Demirskyi D, Sakka Y. High-temperature reaction consolidation of TaC–TiB2 ceramic composites by spark-plasma sintering. J Eur Ceram Soc. 2015;35(1):405–410.
  • Rice RW. Mechanical properties of ceramics and composites: grain and particle effects. New York (NY): CRC Press; 2000.
  • Gillman JJ. Hardnesses of carbides and other refractory hard metals. J Appl Phys. 1970;41(4):1664–1666.
  • Ordan’yan SS, Stepanenko EK, Sokolov IV. Strength of NbC-NbB2 sintered composites. Izv Vyssh Uchebn Zaved Khim. 1984;27(10):1201–1203.
  • Kelly A, Rowcliffe DJ. Deformation of polycrystalline transition metal carbides. J Am Ceram Soc. 1967;50(5):253–256.
  • Katz AP, Lipsitt HA, Mah T, et al. Mechanical behaviour of polycrystalline TiC. J Mater Sci. 1983;18(7):1983–1992.
  • Miracle DB, Lipsitt HA. Mechanical properties of fine‐grained substoichiometric titanium carbide. J Am Ceram Soc. 1983;66(8):592–597.
  • Zubarev PV, Kuraev AB. Stress relaxation in zirconium carbide. 2. Mechanisms of stress relaxation. The relationship of the processes of creep and relaxation. Strength Mater. 1994;26(2):132–136.
  • Lanin AG, Zubarev PV, Vlasov KP. Mechanical and thermophysical properties of materials in HTGR fuel bundles. Atomic Energy. 1993;74(1):40–44.
  • Demirskyi D, Nishimura T, Sakka Y, et al. High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation. Ceram Int. 2016;42(1):1298–1306.
  • Demirskyi D, Vasylkiv O. Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering. Ceram Int. 2016;42(16):19372–19385.
  • Zhao J, Zou J, Man Z-Y, et al. Dopant effects on high temperature mechanical properties of zirconium carbide ceramics. Adv Appl Ceram. 2015;114(6):338–343.
  • Silvestroni L, Pienti L, Guicciardi S, et al. Strength and toughness: the challenging case of TaC-based composites. Compos B. 2015;72:10–20.
  • Maerky C, Guillou M-O, Henshall JL, et al. Indentation hardness and fracture toughness in single crystal TiC0.96. Mater Sci Eng A. 1996;209(1–2):329–336.
  • Neuman EW, Hilmas GE, Fahrneholtz WG. Ultra‐high temperature mechanical properties of a zirconium diboride–zirconium carbide ceramic. J Am Ceram Soc. 2016;99(2):597–603.
  • Taya M, Hayashi S, Kobayashi AS, et al. Toughening of a particulate-reinforced ceramics-matrix composite by thermal residual stress. J Am Ceram Soc. 1990;73(5):1382–1391.
  • Stewart RL, Bradt RC. Fracture of polycrystalline MgAl2O4. J Am Ceram Soc. 1980;63(11–12):619–623.
  • Barantseva IG, Paderno VN. Thermal expansion of solid solutions in thesystems ZrC–NbC and HfC–TaC. In: Samsonov GV, editor. Refractory Carbides. London (UK): Consultants Bureau; 1974. p. 283–285.
  • Maloy S, Heuer AH, Lewandowski J, et al. Carbon addition to molybdenum disilicide: improved high-temperature mechanical properties. J Am Ceram Soc. 1991;74(10):2704–2706.