808
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Comparative study of the Bi(Ni0.5Zr0.5)O3-PbTiO3 and Bi(Mg0.5Zr0.5)O3-PbTiO3 piezoelectric materials for energy harvesters

, &
Pages 75-84 | Received 27 Jul 2020, Accepted 03 Nov 2020, Published online: 18 Nov 2020

References

  • Dondi D, Bertacchini A, Brunelli D, et al. Modeling and optimization of a solar energy harvester system for self-power wireless sensor networks. IEEE Trans Ind Electron. 2008;55:2759–2766.
  • Tang L, Yang Y. A nonlinear piezoelectric energy harvester with magnetic oscillator wireless sensor networks. Appl Phys Lett. 2012;101:094102.
  • Adhikari S, Friswell MI, Inman DJ. Piezoelectric energy harvesting from broadband random vibrations. Smart Mater Struct. 2009;18:115005.
  • Dutoit NE, Wardle BL, Kim SG. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr. 2005;71:121–160.
  • Herbert JM. Ferroelectric Transducers and Sensors. New York (NY): Gordon and Breach, Science Publishers; 1982.
  • Sun FP, Chaudhry Z, Liang C, et al. Truss structure integrity identification using PZT sensor-actuator. J Intell Mater Syst Struct. 1995;6:134–139.
  • Li S, Chen S. Analytical analysis of a circular PZT actuator for valveless micropumps. Sens Actuators, A. 1994;104:151–161.
  • Li Y, Horowitz R, Evans R. Vibration control of a PZT actuated suspension dual-stage servo system using a PZT sensor. IEEE Trans Magn. 2003;39:932–937.
  • Wang D, Cao M, Zhang S. Piezoelectric properties of PbHfO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys Status Solidi RRL. 2012;6:135–137.
  • Wang D, Cao M, Zhang S. Piezoelectric ceramics in the PbSnO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J Am Ceram Soc. 2011;94(11):3690–3693.
  • Saleem M, Hwan LD, Kim I, et al. Frequency-dependent properties of Bi-based relaxor/ferroelectric ceramic composites. Sci Rep. 2018;8:14146.
  • Ahn JH, Koh JH. Enhanced piezoelectric properties of (Bi,Sc)O3-(Pb,Ti)O3 ceramics by optimized calcination process. J Alloys Compd. 2016;689:138–144.
  • Sahu T, Behera B. Dielectric, electrical and conduction mechanism study of 0.6BiFeO3–0.4PbTiO3. Trans Electr Electron Mater. 2018;19:396–402.
  • Duan R, Speyer RF, Alberta E, et al. High Curie temperature perovskite BiInO3–PbTiO3 ceramics. J Mater Res. 2004;19:2185–2193.
  • Rong Y, Chen J, Kang H, et al. Large Piezoelectric response and polarization in relaxor ferroelectric PbTiO3–Bi(Ni1/2Zr1/2)O3. IEEE Trans Magn. 2013;96:1035–1038.
  • Fan L, Chen J, Wang Q, et al. High piezoelectric performance and temperature dependence of ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3–PbTiO3 near morphotropic phase boundary. Ceram Int. 2014;40:7723–7728.
  • Wang D, Li J, Cao M, et al. Effects of Nb2O5 additive on the piezoelectric and dielectric properties of PHT-PMN ternary ceramics near the morphotropic phase boundary. Phys Status Solidi A. 2014;211:226–230.
  • Wang D, Zhao Q, Cao M, et al. Dielectric, piezoelectric, and ferroelectric properties of Al2O3 and MnO2 modified PbSnO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 ternary ceramics. Phys Status Solidi A. 2013;210:1363–1368.
  • Wang D, Cao M, Zhao Q, et al. Dielectric and piezoelectric properties of manganese-modified PbHfO3–PbTiO3–Pb(Mg1/3Nb2/3)O3 ternary ceramics with morphotropic phase boundary compositions. Phys Status Solidi RRL. 2013;7:221–223.
  • Shin DJ, Koh JH. Comparative study on storing energy for (Ba,Zr)TiO3 and CuO-(Ba,Zr)TiO3 ceramics for piezoelectric energy harvesting applications. Ceram Int. 2017;43:S649–S654.
  • Shin DJ, Kim J, Koh JH. Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications. J Eur Ceram Soc. 2018;38:4395–4403.
  • Xiaol Y, Yudong H, Haiyan Z, et al. The role of secondary phase in enhancing transduction coefficient of piezoelectric energy harvesting composites. J Mater Chem C. 2019;7:3479–3485.
  • Berdy DF, Srisungsitthisunti P, Jung B, et al. Low-frequency meandering piezoelectric vibration energy harvester. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:846–858.
  • Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun. 2003;26:1131–1144.
  • Xu CN, Akiyama M, Nonaka K, et al. Electrical power generation characteristics of PZT piezoelectric ceramics. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:1065–1070.
  • Erturk A, Bilgen O, Inman DJ, et al. Power generation and shunt damping performance of a single crystal lead magnesium niobite-lead zirconate titanate unimorph: analysis and experiment. Appl Phys Lett. 2008;93:224102.
  • Xie J, Mane XP, Green CW, et al. Performance of thin piezoelectric materials for pyroelectric energy harvesting. J Intell Mater Syst Struct. 2010;21:243–249.
  • Mo C, Clark WW, Radziemski LJ. Energy harvesting with piezoelectric unimorph circular diaphragms. Proceedings of SMASIS08 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2008 Oct 28–30; Ellicott City, Maryland, USA: ASME press; 2009. p. 365–370.
  • Kim J, Yoon S, Ji JH, et al. Enhanced ferroelectric and piezoelectric properties of (1-x)PMN-xPT ceramics based on a partial oxalate process. Materials. 2018;11:2247.
  • Park MY, Ji JH, Koh JH. Relaxation-related piezoelectric and dielectric behavior of Bi(Mg,Ti)O3–PbTiO3 ceramic. Sensors. 2019;19:2115.
  • Kim BS, Ji JH, Kim HT, et al. Improved multilayered (Bi,Sc)O3-(Pb,Ti)O3 piezoelectric energy harvesters based on impedance matching technique. Sensors. 2020;20:1958.