715
Views
1
CrossRef citations to date
0
Altmetric
Full Length Article

Effect of B-site Zr and Hf substitution on ferroelectric polar order for tetragonal tungsten bronze ceramic

, , &
Pages 396-404 | Received 25 Jan 2022, Accepted 02 Apr 2022, Published online: 17 Apr 2022

References

  • Qiu C, Wang B, Zhang N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature. 2020;577:350–354.
  • Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory. Sci Adv. 2017;3:e1700512.
  • Tang ZX, Ge PZ, Tang XG, et al. Pyroelectric energy harvesting and ferroelectric properties of PbxSr1-xTiO3 ceramics. J Asian Ceram Soc. 2020;8(4):1147–1153.
  • Pandya S, Wilbur J, Kim J, et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater. 2018;17(5):432–438.
  • Ondrejkovic P, Kempa M, Kulda J, et al. Dynamics of nanoscale polarization fluctuations in a uniaxial relaxor. Phys Rev Lett. 2014;113:167601.
  • Pasciak M, Kopecky M, Kub J, et al. X-ray diffuse scattering observations for SrxBa1−xNb2O6 single crystals with x =0.35 and 0.81. Phase Trans. 2018;91:969–975.
  • Buixaderas E, Kempa M, Svirskas Š, et al. Dynamics of mesoscopic polarization in the uniaxial tetragonal tungsten bronze SrxBa1-xNb2O6. Phys Rev B. 2019;100:184113.
  • Shvartsman VV, Kleemann W. Nanopolar structure in SrxBa1-xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys Rev B. 2008;77:054105.
  • Salazar N, Dulce P-M, Calzada ML, et al. Ergodicity of fine-grained canonical relaxor ferroelectric (Bi0.5Na0.5)1-xBaxTiO3 films. J Am Ceram Soc. 2019;102(10):5941–5951.
  • Rohrbeck A, Flor G, Aroyo MI, et al. The effect of chemical variations on the structural polarity of relaxor ferroelectrics studied by resonance Raman spectroscopy. J Phys Condens Matter. 2016;28(47):475902.
  • Shvartsman VV, Lupascu DC. Lead-free relaxor ferroelectrics. J Am Ceram Soc. 2012;95(1):1–26.
  • Balachandran PV, Xue DZ, Lookman T. Structure-Curie temperature relationships in BaTiO3-based ferroelectric perovskites: anomalous behavior of (Ba,Cd)TiO3 from DFT, statistical inference, and experiments. Phys Rev B. 2016;93(14):144111.
  • Mentzer C, Lisenkov S, Fthenakis ZG, et al. Phase evolution in the ferroelectric relaxor Ba(Ti1-x,Zrx)O3 from atomistic simulations. Phys Rev B. 2019;99(6):064111.
  • Zhao CL, Wang H, Xiong J, et al. Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M=Sn,Hf,Zr) lead-free ceramics. Dalton Trans. 2016;45(15):6466–6480.
  • Shvartsman VV, Zhai J, Kleemann W. The dielectric relaxation in solid solutions BaTi1-xZrxO3. Ferroelectrics. 2009;379:77.
  • Bokov AA, Maglione M, Ye ZG. Quasi-ferroelectric state in Ba(Ti1-xZrx)O3 relaxor: dielectric spectroscopy evidence. J Phys Condens Matter. 2007;19(9):092001.
  • Oliver JR, Neurgaonkar RR, Cross LE. Ferroelectric properties of tungsten bronze morphotropic phase bounary systems. J Am Ceram Soc. 1989;72(2):202–211.
  • Olsen GH, Aschauer U, Nicola A, et al. Origin of ferroelectric polarization in tetragonal tungsten-bronze-type oxides. Phys Rev B. 2016;93:180101.
  • Albino M, Heijboer P, Porcher F, et al. Metastable ferroelectric phase and crossover in the Ba2NdFeNb4xTaxO15 TTB solid solution. J Mater Chem C. 2018;6:1521–1534.
  • Wang Y, Sun TL, Zhu XL, et al. Ferroelectric transition and structural modulation in Sr2Na(Nb1-xTax)5O15 tungsten bronze ceramics. J Appl Phys. 2021;129(24):244107.
  • Feng WB, Zhu XL, Liu XQ, et al. Effect of B site ions on the relaxor to normal ferroelectric transition crossover in Ba4Sm2Zr4(NbxTa1-x)6O30 tungsten bronze ceramics. Appl Phys Lett. 2018;112:262904.
  • Feng WB, Zhu XL, Liu XQ, et al. Ferroelectric transitions and relaxor behavior in Ba4Sm2(Ti1-xZrx)4Ta6O30 tungsten bronze ceramics. J Appl Phys. 2018;124:104102.
  • Feng WB, Zhu XL, Liu XQ, et al. Crystal structure, ferroelectricity and polar order in Ba4R2Zr4Nb6O30 (R=La,Nd,Sm) tetragonal tungsten bronze new system. J Mater Chem C. 2017;5:4009–4016.
  • Glazounov AE, Tagantsev AK. Direct evidence for Vögel-Fulcher freezing in relaxor ferroelectrics. Appl Phys Lett. 1998;73:856–858.
  • Nanba T, Sakida S, Miura Y. Advances in glass and optical materials II. New Jersey: John Wiley & Sons, Inc.; 2006. p. 165–177.
  • Saghayezhian M, Rezaei Sani SM, Zhang J, et al. Rumpling and enhanced covalency at the SrTiO3(001) surface. J Phys Chem C. 2019;123(13):8086–8091.
  • Feng WB, Zhu XL, Chen XM. Crystal structure dielectric and ferroelectric characteristics of zirconate tantalate ceramics with tungsten bronze structure. J Mater Sci: Mater Electron. 2021;32:7481–7490.
  • Wilde RE. Raman spectrum of Sr0.61Ba0.39Nb2O6. J Raman Spectrosc. 1991;22:321–325.
  • Yao YB, Mak CL, Ploss B. Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5−xNb10O30 (KNSBN) ceramics with ‘unfilled’ and ‘filled’ tetragonal tungsten bronze (TTB) crystal structure. J Eur Ceram Soc. 2012;32:4353–4361.
  • Xia HR, Chen HC, Yu H, et al. Effect of Cu ions on the polarization and polar lattice vibrations of potassium sodium strontium barium niobate single crystals. Phys Rev B. 1997;55:14892.
  • Massarotti V, Capsoni D, Bini M, et al. Tungsten bronzes framework as a glasslike host for transition cations: the case of Ba6Zr2Ta8O30. J Phys Chem C. 2017;111(18):6857–6861.
  • Lima-Silva JJ, Garcia D, Mendes FJ, et al. The ferro-paraelectric phase transition of Pb0.6Ba0.4Nb2O6 investigated by Raman scattering. Phys Stat Sol(b). 2004;241(8):2001–2006.
  • Zhu X, Fu M, Stennett MC, et al. A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem Mater. 2015;27:3250–3261.
  • Rotaru A, Morrison FD. Vogel–Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: ba6MNb9O30 (M=Ga, Sc, In). J Therm Anal Calorim. 2015;120:1249–1259.