905
Views
0
CrossRef citations to date
0
Altmetric
Full Length Article

Enhanced electrical and energy harvesting performances of lead-free BMT modified BNT piezoelectric ceramics

&
Pages 498-513 | Received 01 Mar 2022, Accepted 08 May 2022, Published online: 13 Jun 2022

References

  • Kang WS, Koh JH. (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications. J Eur Ceram Soc. 2015;35(7):2057–2064.
  • Swallow LM, Luo JK, Siores E, et al. A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Struct. 2008;17(2):025017.
  • Shin DJ, Kang WS, Koh JH, et al. Comparative study between the pillar and bulk-type multilayer structures for piezoelectric energy harvesters. Phys Status Solidi A. 2014;211(8):1812–1817.
  • Liang G, Zhang Y, Zhu J, et al. Tailoring and improving the strong-electric-field electrical properties of the BNT-BT ferroelectric ceramics by a functional-group-doping. Ceram Int. 2021;47(5):6584–6590.
  • Yan B, Fan H, Wang C, et al. Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram Int. 2020;46(1):281–288.
  • Vuong LD, Gio PD. Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0.5(Na0.4K0.1)TiO3 lead-free ceramics. J Alloys Compd. 2020;817:152790.
  • Wang H, Hu Q, Liu X, et al. A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability. Ceram Int. 2019;45(17):23233–23240.
  • He H, Lu W, Jas O, et al. Probing the coexistence of ferroelectric and relaxor states in Bi0.5Na0.5TiO3 -based ceramics for enhanced piezoelectric performance. ACS Appl Mater Interfaces. 2020;12(27):30548–30556.
  • Wang J, Du Y, Li Z, et al. High permittivity and low dielectric loss of (1-x)Bi0.5(Na0.48K0.52)0.5TiO3-xBaZrO3 lead-free ceramics. J Mater Sci: Mater Electron. 2020;31:10038–10046.
  • Schwertfager N, Pandech N, Suewattana M, et al. Calculated XANES spectra of cation off-centering in Bi(Mg0.5Ti0.5)O3. Ferroelectrics. 2016;490(1):159–166.
  • Khalyavin DD, Salak AN, Vyshatko NP, et al. Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3:  bi-based structural analogue of antiferroelectric PbZrO3. Chem Mater. 2006;18(21):5104–5110.
  • Purohit V, Padhee R, Choudhary RNP. Structural and electrical properties of Bi(Mg0.5Ti0.5)O3 ceramic. J Mater Sci.: Mater Electronics. 2018;29:5224–5232.
  • He F, Chen X, Chen J, et al. (K0.5Na0.5)NbO3-Bi(Mg0.5Ti0.5)O3 solid solution: phase evolution, microstructure and electrical properties. J Mater Sci: Mater Electron. 2013;24:4346–4350.
  • Xiong B, Hao H, Zhang S, et al. Structure, dielectric properties and temperature stability of BaTiO3-Bi(Mg1/2Ti1/2)O3 perovskite solid solutions. J Am Ceram Soc. 2011;94(10):3412–3417.
  • Sun R, Wang X, Shi J, et al. Dielectric and polar order behaviors of BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramics. Appl Phys A. 2011;104(1):129–133.
  • Si F, Tang B, Fang Z, et al. Nb-Doped 0.8BaTiO3-0.2Bi(Mg0.5Ti0.5)O3 ceramics with stable dielectric properties at high temperature. Crystals. 2017;7(6):168.
  • Rai R, Sinha A, Sharmac S, et al. Investigation of structural and electrical properties of (1-x)Bi0.5Mg0.5TiO3-(x)PbTiO3 ceramic system. J Alloys Compd. 2009;486(1–2):273–277.
  • Ansell TY, Nikkel J, Cann DP, et al. High temperature piezoelectric ceramics based on xPbTiO3-(1-x)Bi(Sc1/2Me1/4Ti1/4)O3 (Me = Zn, Mg) ternary perovskites. Jpn J Appl Phys. 2012;51:101802.
  • Suchomel MR, Davies PK. Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B′B″)O3 based dielectric ceramics. J Appl Phys. 2004;96(8):4405–4410.
  • Sharma S, Rai R, Hall DA, et al. Nonlinear ferroelectric and dielectric properties of Bi(Mg0.5Ti0.5)O3-PbTiO3 perovskite solid solutions. Adv Mat Lett. 2012;3(2):92–96.
  • Zeb A, Hall DA, Milne SJ. Lead-free piezoelectric K0.5Bi0.5TiO3-Bi(Mg0.5Ti0.5)O3 ceramics with depolarisation temperatures up to ~ 220 °C. J Mater Sci: Mater Electron. 2015;26:9516–9521.
  • Jing R, Jin L, Tian Y, et al. Bi(Mg0.5Ti0.5)O3-doped NaNbO3 ferroelectric ceramics: linear regulation of Curie temperature and ultra-high thermally stable dielectric response. Ceram Int. 2019;45(17):21175–21182.
  • Tian A, Zuo R, Qi H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A. 2020;8(17):8352–8359.
  • Yoneda Y, Noguchi Y. Nanoscale structural analysis of Bi0.5Na0.5TiO3. Jpn J Appl Phys. 2020;59(SP): PA01.
  • Lin D, Kwok KW, Chan HLW. Structure and electrical properties of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Solid State Ion. 2008;178:1930–1937.
  • Nesterović A, Vukmirović J, Stijepović I, et al. Structure and dielectric properties of (1-x)Bi0.5Na0.5TiO3–xBaTiO3 piezoceramics prepared using hydrothermally synthesized powders. R Soc Open Sci. 2021;8(7):202365.
  • Difeo M, Osinaga S, Febbo M, et al. Influence of the (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramic geometries on the power generation of energy harvesting devices. Ceram Int. 2021;47(8):10696–10704.
  • Kantha P, Pisitpipathsin N. Effect of KNbO3 addition on diffuse phase transition and dielectric properties of Bi0.5Na0.5TiO3 ceramics. Int Ferroelectrics. 2018;187(1):129–137
  • Shannon RD. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. 1976;A32(5):751–767.
  • Jaita P, Watcharapasorn A, Kumar N, et al. Lead-Free (Ba0.70Sr0.30)TiO3-Modified Bi0.5(Na0.80K0.20)0.5TiO3 ceramics with large electric field-induced strains. J Am Ceram Soc. 2016;99(5):1615–1624.
  • Jaita P, Jarupoom P, Yimnirun R, et al. Phase transition and tolerance factor relationship of lead-free (Bi0.5K0.5)TiO3-Bi(Mg0.5Ti0.5)O3 piezoelectric ceramics. Ceram Int. 2016;42(14):15940–15949.
  • Vittayakorn N, Rujijanagul G, Tunkasiri T. Perovskite phase formation and ferroelectric properties of the lead nickel niobate-lead zinc niobate-lead zirconate titanate ternary system. J Mater Res. 2003;18(12):2882–2889.
  • Rao KS, Rajulu KCV, Tilak B, et al. Effect of Ba2+ in BNT ceramics on dielectric and conductivity properties. Nat Sci. 2010;2(4):357–367.
  • Wang J, Zhou C, Li Q, et al. Dual relaxation behaviors and large electrostrictive properties of Bi0.5Na0.5TiO3-Sr0.85Bi0.1TiO3 ceramics. J Mater Sci. 2018;53(12):8844–8854.
  • Zhong M, Feng Q, Yuan C, et al. Photocurrent density and electrical properties of Bi0.5Na0.5TiO3-BaNi0.5Nb0.5O3 ceramics. J Adv Ceram. 2021;10(5):1119–1128.
  • Rout D, Moon KS, Kang SJL, et al. Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3-xSrTiO3 system. J Appl Phys. 2010;108(8):084102.
  • Prasertpalichat S, Siritanon T, Nuntawong N, et al. Structural characterization of A-site nonstoichiometric (1-x)Bi0.5Na0.5TiO3-xBaTiO3 ceramics. J Mater Sci. 2019;54(2):1162–1170.
  • Li L, Fang D, Wang RX, et al. Domain evolution and improved electrical property of BiMn2/3Nb1/3O3 doped 0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3. Ceram Int. 2020;46(6):7947–7953.
  • Lee YC, Lee TK, Jan JH. Piezoelectric properties and microstructures of ZnO-doped Bi0.5Na0.5TiO3 ceramics. J Eur Ceram Soc. 2011;31(16):3145–3152.
  • Zhou X, Yan Z, Qi H, et al. Electrical properties and relaxor phase evolution of Nb-modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-SrTiO3 lead-free ceramics. J Eur Ceram Soc. 2019;39:2310–2317.
  • Zhou X, Qi H, Yan Z, et al. Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3 NaTaO3 relaxor ferroelectrics. ACS Appl Mater Interfaces. 2019;11(46):43107–43115.
  • Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3−6 mol% BaTiO3. J Appl Phys. 2011;110(7):074106.
  • Ke S, Fan H, Huang H, et al. Lorentz-type relationship of the temperature dependent dielectric permittivity in ferroelectrics with diffuse phase transition. Appl Phys Lett. 2008;93(11):112906.
  • Fang P, Xi Z, Long W, et al. Structural and dielectric relaxor behavior of Ba1-xNdxBi4Ti4O15 ceramics. Solid State Commun. 2016;231-232:1–5.
  • Bokov AA, Ye ZG. Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics. Solid State Commun. 2000;116(2):105–108.
  • Jarupoom P, Jaita P. Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3-CoFe2O4 magnetoelectric ceramics. Electron Mater Lett. 2015;11(5):788–794.
  • Li Q, Wang J, Ma Y, et al. Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 modified by CaZrO3. J Alloys Compd. 2016;663:701–707.
  • Randall CA, Kim N, Kucera JP, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc. 1998;81(3):677–688.
  • Mudinepalli VR, Feng L, Lin WC, et al. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J Adv Ceram. 2015;4(1):46–53.
  • Jaita P, Watcharapasorn A, Kumar N, et al. Large electric field-induced strain and piezoelectric responses of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-Ba(Ti0.90Sn0.10)O3 ceramics near morphotropic phase boundary. Electron Mater Lett. 2015;11(5):828–835.
  • Jaita P, Watcharapasorn A, Cann DP, et al. Dielectric, ferroelectric and electric field-induced strain behavior of Ba(Ti0.90Sn0.10)O3-modified Bi0.5(Na0.80K0.20)0.5TiO3 lead-free piezoelectrics. J Alloys Compd. 2014;596:98–106.
  • Chauhan A, Patel S, Vaish R. Mechanical confinement for improved energy storage density in BNT-BT-KNN leadfree ceramic capacitors. AIP Adv. 2014;4(8):087106.
  • Prado A, Camargo J, Öchsner P, et al. Synthesis and characterization of Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 ceramics for energy storage applications. J Electroceram. 2020;44(3–4):248–255.
  • Yu Y, Zhang Y, Zhang Y, et al. High-temperature energy storage performances in (1-x)(Na0.50Bi0.50TiO3)-xBaZrO3 lead-free relaxor ceramics. Ceram Int. 2020;46(18):28652–28658.
  • Yu Z, Zeng J, Zheng L, et al. Microstructure effects on the energy storage density in BiFeO3-based ferroelectric ceramics. Ceram Int. 2021;47(9):12735–12741.
  • Huang Y, Li F, Hao H, et al. (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics. 2019;5(3):385–393.
  • Yang H, Yan F, Lin Y, et al. A lead free relaxation and high energy storage efficiency ceramics for energy storage applications. J Alloys Compd. 2017;710:436–445.
  • Malik RA, Hussain A, Maqbool A, et al. Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3−0.04SrTiO3 ceramics for actuator applications. J Am Ceram Soc. 2015;98(12):3842–3848.
  • Jaita P, Jarupoom P. Enhanced electric field-induced strain and electrostrictive response of lead-free BaTiO3 -modified Bi0.5(Na0.80K0.20)0.5TiO3 piezoelectric ceramics. J Asian Ceram Soc. 2021;9(3):975–987.
  • Li L, Hao J, Chu R, et al. Dielectric, ferroelectric and field-induced strain response of lead-free (Fe,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 ceramics. Ceram Int. 2016;42(8):9419–9425.
  • Takenaka T, Maruyama K, Sakata K. (Bi1/2Na1/2)TiO3 -BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys. 1991;30(Part 1, No. 9B):2236–2239.
  • Ullah A, Ahn CW, Hussain A, et al. Structural transition and large electric field-induced strain in BiAlO3-modified Bi0.5(Na0.8K0.2)0.5TiO3 lead-free piezoelectric ceramics. Solid State Com. 2010;150(25–26):1145–1149.
  • Shin DJ, Kim J, Koh JH. Piezoelectric properties of (1-x)BZT-xBCT system for energy harvesting applications. J Eur Ceram Soc. 2018;38(13):4395–4403.
  • Choi YJ, Yoo MJ, Kang HW, et al. Dielectric and piezoelectric properties of ceramic-polymer composites with 0-3 connectivity type. J Electroceram. 2013;30(1–2):30–35.
  • Shin DJ, Koh JH. Comparative study on storing energy for (Ba,Zr)TiO3 and CuO-(Ba,Zr)TiO3 ceramics for piezoelectric energy harvesting applications. Ceram Int. 2017;43:S649–S654.
  • Zhao H, Hou Y, Yu X, et al. A wide temperature insensitive piezoceramics for high temperature energy harvesting. J Am Ceram Soc. 2019;102(9):5316–5327.
  • Liu B, Li P, Shen B, et al. Simultaneously enhanced piezoelectric response and piezoelectric voltage coefficient in textured KNN-based ceramics. J Am Ceram Soc. 2018;101(1):265–273.
  • Mishra KK, Satya AT, Bharathi A, et al. Vibrational, magnetic, and dielectric behavior of La-substituted BiFeO3 -PbTiO3. J Appl Phys. 2011;110(12):123529.
  • Wang Y, Pu Y, Shi Y, et al. Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites. J Mater Sci: Mater Electron. 2017;28:11125–11131.
  • Rani J, Yadav KL, Prakash S. Dielectric and magnetic properties of xCoFe2O4-(1-x)[0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3] composites. Mater Res Bull. 2014;60:367–375.
  • Wu X, Liu C, Tse MY, et al. Luminescent-electrical-magnetic performances of sol-gel-derived Ni2+-modified Bi0.5Na0.5TiO3. J Mater Sci: Mater Electron. 2017;28:12021–12025.