738
Views
2
CrossRef citations to date
0
Altmetric
Full Length Article

Effect of in-situ synthesized TiB2 on microstructure and mechanical property of Al/TiB2-SiC interpenetrating phase composites

ORCID Icon, &
Pages 531-544 | Received 06 Feb 2022, Accepted 23 May 2022, Published online: 27 Jun 2022

References

  • Xie J, Ma J, Liao M, et al. Reinforcement of thermally-conductive SiC/Al composite with 3D-interpenetrated network structure by various SiC foam ceramic skeletons. Ceram Int. 2021;47:30869–30879.
  • Bodunrin MO, Alaneme KK, Chown LH. Aluminium matrix hybrid composites: a review of reinforcement philosophies; Mechanical, corrosion and tribological characteristics. J Mater Res Technol. 2015;4:434–445.
  • Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3:79–85.
  • Knowles AJ, Jiang X, Galano M, et al. Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles. J Alloys Compd. 2015;615:S401–S405.
  • El-Kady O, Fathy A. Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des. 2014;54:348–353.
  • Clarke DR. Interpenetrating Phase Composites. J Am Ceram Soc. 1992;75:739–758.
  • Xie L, Sun T, He C, et al. Enhancement of toughness of SiC through compositing SiC-Al interpenetrating phase composites. Nanotechnology. 2020;31:135706.
  • Kouzeli M, Dunand DC. Effect of reinforcement connectivity on the elasto-plastic behavior of aluminum composites containing sub-micron alumina particles. Acta Mater. 2003;51:6105–6121.
  • Horny D, Schukraft J, Weidenmann KA, et al. Numerical and experimental characterization of elastic properties of a novel, highly homogeneous interpenetrating metal ceramic composite. Adv Eng Mater. 2020;22:1901556.
  • San Marchi C, Kouzeli M, Rao R, et al. Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture. Scr Mater. 2003;49:861–866.
  • Zheng Y, Zhou Y, Feng Y, et al. Synthesis and mechanical properties of TiC-Fe interpenetrating phase composites fabricated by infiltration process. Ceram Int. 2018;44:21742–21749.
  • Horvitz D, Gotman I, Gutmanas EY, et al. In situ processing of dense Al2O3-Ti aluminide interpenetrating phase composites. J Eur Ceram Soc. 2002;22:947–954.
  • Wang D, Zheng Z, Lv J, et al. Multimodal particle distribution in 3D-SiC/Al-Si-Mg interpenetrating composite fabricated by pressureless infiltration. Ceram Int. 2018;44:19851–19858.
  • Wang FC, Zhang X, Wang YW, et al. Damage evolution and distribution of interpenetrating phase composites under dynamic loading. Ceram Int. 2014;40:13241–13248.
  • Li G, Zhang X, Fan Q, et al. Simulation of damage and failure processes of interpenetrating SiC/Al composites subjected to dynamic compressive loading. Acta Mater. 2014;78:190–202.
  • Kota N, Jana P, Sahasrabudhe S, et al. Processing and characterization of Al-Si alloy/SiC foam interpenetrating phase composite. Mater Today Proc. 2021;44:2930–2933.
  • Wang B, Zhao S, Ojima F, et al. Pulse electric current sintering of 3D interpenetrating SiC/Al composites. Ceram Int. 2017;43:2867–2870.
  • Wang D, Zheng Z, Lv J, et al. Enhanced thermal conductive 3D-SiC/Al-Si-Mg interpenetrating composites fabricated by pressureless infiltration. Ceram Int. 2017;43:1755–1761.
  • Boskovic S, Zec S, Krstic V, et al. Pressureless sintering of internally synthesized SiC-TiB2 composites with improved fracture strength. J Alloys Compd. 2010;509:990–996.
  • Sabahi Namini A, SeyedGogani SN, Shahedi Asl M, et al. Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite. Int J Refract Met Hard Mater. 2015;51:169–179.
  • Zhang X, Zhang Z, Liu Y, et al. Effects of particle size of raw materials on the characteristics of TiB2-SiC composites fabricated from B4C, TiC and Si powders. Ceram Int. 2019;45:978–984.
  • Taya M, Hayashi S, Kobayashi AS, et al. Toughening of a particulate‐reinforced ceramic‐matrix composite by thermal residual stress. J Am Ceram Soc. 1990;73:1382–1391.
  • Karbalaei Akbari M, Baharvandi HR, Shirvanimoghaddam K. Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater Des . 2015;66:150–161.
  • Wu N, Xue F, Yang H, et al. Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites. Ceram Int. 2019;45:1370–1378.
  • Akbari MK, Shirvanimoghaddam K, Hai Z, et al. Al-TiB2 micro/nanocomposites: particle capture investigations, strengthening mechanisms and mathematical modelling of mechanical properties. Mater Sci Eng A. 2017;682:98–106.
  • Bucevac D, Boskovic S, Matovic B, et al. Toughening of SiC matrix with in-situ created TiB2 particles. Ceram Int. 2010;36:2181–2188.
  • Wang M, Wu Y, Wang H, et al. Mechanical properties of in-situ TiB2/A356 composites. Mater Sci Eng A. 2013;590:246–254.
  • Ryshkewitch E. Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc. 1953;36:65–68.
  • De Mestral F, Thévenot F. Ceramic composites: tiB2-TiC-SiC. J Mater Sci. 1991;26:5561–5565.
  • Liu C, Lin Y, Zhou Z, et al. Dual phase amorphous carbon ceramic achieves theoretical strength limit and large plasticity. Carbon N Y. 2017;122:276–280.
  • Ibrahim MF, Ammar HR, Samuel AM, et al. Mechanical properties and fracture of Al-15 vol.-%B4C based metal matrix composites. Int J Cast Met Res. 2014;27:7–14.
  • Pech-Canul MI, Katz RN, Makhlouf MM. Optimum conditions for pressureless infiltration of SiCp preforms by aluminum alloys. J Mater Process Technol. 2000;108:68–77.
  • Huang SG, Vanmeensel K, Van der Biest O, et al. In situ synthesis and densification of submicrometer-grained B4C-TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc. 2011;31:637–644.
  • Li R, Zhang Y, Lou H, et al. Synthesis of ZrB2 nanoparticles by sol-gel method. J Sol-Gel Sci Technol. 2011;58:580–585.
  • Basu B, Raju GB, Suri AK. Processing and properties of monolithic TiB2 based materials. Int Mater Rev. 2006;51:352–374.
  • Zawrah MF, Taha MA, Abo Mostafa H. In-situ formation of Al2O3/Al core-shell from waste material: production of porous composite improved by graphene. Ceram Int. 2018;44:10693–10699.
  • Holt JB, Kingman DD, Bianchini GM. Kinetics of the combustion synthesis of TiB2. Mater Sci Eng . 1985;71:321–327.
  • Song S, Lin Y, Fan Y, et al. In situ fabrication of ZrB2-SiC composite powders with controllable morphology by a two-step calcination method. J Solid State Chem. 2019;273:101–105.
  • Yamada S, Hirao K, Yamauchi Y, et al. High strength B4C-TiB2 composites fabricated by reaction. J Eur Ceram Soc. 2003;23:1123–1130.
  • Zhao G, Huang C, Liu H, et al. Microstructure and mechanical properties of TiB2-SiC ceramic composites by reactive hot pressing. Int J Refract Met Hard Mater. 2014;42:36–41.
  • Guo X, Guo Q, Li Z, et al. Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars. Scr Mater. 2016;114:56–59.
  • Liu X, Li J, Liu E, et al. Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites. Mater Sci Eng A. 2018;718:182–189.
  • Saucedo-Mora L, Zou C, Lowe T, et al. Three-dimensional measurement and cohesive element modelling of deformation and damage in a 2.5-dimensional woven ceramic matrix composite. Fatigue FractEng Mater Struct. 2017;40:683–695.
  • Zhang GP, Mei QS, Chen F, et al. Production of a high strength Al/(TiAl3+Al2O3) composite from an Al-TiO2 system by accumulative roll-bonding and spark plasma sintering. Mater Sci Eng A. 2019;752:192–198.
  • Akin I, Goller G. Research and innovation in carbon nanotube-based composites. Hong Kong (HK): The World Academic Publishing; 2015. p. 447–486. Spark plasma sintering of zirconia-toughened alumina composites and ultra-high temperature ceramics reinforced with carbon nanotubes.
  • Maj J, Basista M, Węglewski W, et al. Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Mater Sci Eng A. 2018;715:154–162.
  • Paneto FJ, Pereira JL, Lima JO, et al. Effect of porosity on hardness of Al2O3-Y3Al5O12 ceramic composite. Int J Refract Met Hard Mater. 2015;48:365–368.
  • Zhang X, Zhang Z, Wang W, et al. Preparation of B4C composites toughened by TiB2-SiC agglomerates. J Eur Ceram Soc. 2017;37:865–869.
  • Shahedi Asl M. Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2-SiC-Cf composites. Ceram Int. 2017;43:15047–15052.
  • Pan L, Song K, Gu J, et al. Microstructure and mechanical properties of (TiB2+SiC) reinforced Ti3SiC2 composites synthesized by in situ hot pressing. Int J Appl Ceram Technol. 2016;13:629–635.
  • Liu Q, Ye F, Gao Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. J Alloys Compd. 2014;585:146–153.
  • Pineau A, Benzerga AA, Pardoen T. Failure of metals I: brittle and ductile fracture. Acta Mater. 2016;107:424–483.
  • Xiao P, Gao Y, Yang C, et al. Strengthening and toughening mechanisms of Mg matrix composites reinforced with specific spatial arrangement of in-situ TiB2 nanoparticles. Compos Part B Eng. 2020;198:108174.
  • Shu S, Tong C, Qiu F, et al. Effect of ceramic content on the compression properties of TiB2-Ti2AlC/TiAl composites. Metals (Basel). 2015;5:2200–2209.
  • Fitzpatrick ME, Withers PJ, Baczmanski A, et al. Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain. Acta Mater. 2002;50:1031–1040.
  • Sheng P, Zhang J, Ji Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles. Compos Sci Technol. 2016;134:26–35.
  • Du R, Yuan D, Li F, et al. Effect of in-situ TiB2 particles on microstructure and mechanical properties of Mg2Si/Al composites. J Alloys Compd. 2019;776:536–542.