1,402
Views
0
CrossRef citations to date
0
Altmetric
Invited Article

Development of oxide-based all-solid-state batteries using aerosol deposition

& ORCID Icon
Pages 1-10 | Received 25 Oct 2022, Accepted 22 Dec 2022, Published online: 28 Dec 2022

References

  • Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778–7781.
  • Sun Z, Liu L, Lu Y, et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J Eur Ceram Soc. 2019;39(2–3):402–408.
  • Inaguma Y, Liquan C, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun; 1993;86:689–693.
  • https://www.tdk-electronics.tdk.com/en/ceracharge. Accessed: 26 December 2022.
  • https://www.murata.com/en-eu/news/batteries/solid_state/2019/0626. Accessed: 26 December 2022.
  • Ohta N, Takada K, Zhang L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv Mater. 2006;18(17):2226–2229.
  • Sakuda A, Hayashi A, Tatsumisago M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep. 2013;3(1):2261.
  • Rahaman MN Sintering of Ceramics Fundamentals. Ceramic processing and sintering Second Edition. USA: Taylor & Francis; 2003. ISBN: 978-0-8247-0988-4.
  • Akedo J. Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc. 2006;89(6):1834–1839.
  • Hnaft D, Exner J, Schubert M, et al. An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J Ceram Sci Technol. 2015;6:147–182.
  • Akedo J. Room temperature impact consolidation and application to ceramic coatings: aerosol deposition method. J Ceram Soc Jpn. 2020;128(3):101–116.
  • Fuchita E, Tokizaki E, Ozawa E, et al. Appearance of high-temperature phase in zirconia films made by aerosol gas deposition method. J Ceram Soc Jpn. 2011;119(1388):271–276.
  • Iwasaki S, Hamanaka T, Yamakawa T, et al. Preparation of thick-film LiNi1/3Co1/3Mn1/3O2 electrodes by aerosol deposition and its application to all-solid-state batteries. J Power Sources. 2014;272:1086–1090.
  • Usui H, Kashiwa Y, Iida T, et al. Anode properties of Ru-coated Si thick film electrodes prepared by gas-deposition. J Power Sources. 2010;195(11):3649–3654.
  • Inada R, Shibukawa K, Masada C, et al. Characterization of as-deposited Li4Ti5O12 thin film electrode prepared by aerosol deposition method. J Power Sources. 2014;253:181–186.
  • Kim I, Park J, Nam T-H, et al. Electrochemical properties of an as-deposited LiFePO4 thin film electrode prepared by aerosol deposition. J Power Sources. 2013;244:646–651.
  • Ahn C-W, Choi -J-J, Ryu J, et al. Microstructure and electrochemical properties of iron oxide film fabricated by aerosol deposition method for lithium ion battery. J Power Sources. 2015;275:336–340.
  • Ahn C-W, Choi -J-J, Ryu J, et al. Microstructure and ionic conductivity in Li 7 La 3 Zr 2 O 12 film prepared by Aerosol deposition method. J Electrochem Soc. 2015;162(1):A60–A63.
  • http://nisri.jp/jisedai/docs/lecture_20101216_akedo.pdf in Japanese. Accessed 26 December 2022.
  • Cheng EJ, Kushida Y, Abe T, et al. Degradation mechanism of all-solid-state Li-metal batteries studied by electrochemical impedance spectroscopy. ACS Appl Mater Interfaces. 2022;14(36):40881–40889.
  • Choi -J-J, S-H O, Noh H-S, et al. Low temperature fabrication of nano-structured porous LSM–YSZ composite cathode film by aerosol deposition. J Alloys Compd. 2011;509(5):2627–2630.
  • Wang S-F, Hsu Y-F, Wang C-H, et al. Solid oxide fuel cells with Sm0.2Ce0.8O2−δ electrolyte film deposited by novel aerosol deposition method. J Power Sources. 2011;196(11):5064–5069.
  • Akedo J, Lebedev M. Microstructure and electrical properties of lead zirconate titanate(Pb(Zr 52 /Ti 48)O 3) thick films deposited by Aerosol deposition method. Jpn J Appl Phys. 1999;38(9S):5397–5401.
  • Kim H-K, Lee S-H, Kim SI, et al. Dielectric strength of voidless BaTiO 3 films with nano-scale grains fabricated by aerosol deposition. J Appl Phys. 2014;115(1):014101.
  • Lebedev M, Akedo J, Ito T. Substrate heating effects on hardness of α -Al2O3 thick film formed by aerosol deposition method. J Cryst Growth. 2005;275(1–2):e1301–e1306.
  • https://jp.toto.com/products/ceramics/ad/ in Japanese . Accessed: 26 December 2022.
  • Ryou H, Drazin JW, Wahl KJ, et al. Below the hall–Petch limit in nanocrystalline ceramics. ACS Nano. 2018;12(4):3083–3094.
  • Gockeln M, Glenneberg J, Busse M, et al. Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries. Nano Energy. 2018;49:564–573.
  • Kato T, Iwasaki S, Ishii Y, et al. Preparation of thick-film electrode-solid electrolyte composites on Li7La3Zr2O12 and their electrochemical properties. J Power Sources. 2016;303:65–72.
  • Iriyama Y, Wadaguchi M, Yoshida K, et al. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition. J Power Sources. 2018;385:55–61.
  • West WC, Ishii Y, Kaneko M, et al. Deep discharge and elevated temperature cycling of LiMn1.485Ni0.45Cr0.05O4 spinel cathodes: solid-state cell studies. ECS Electrochem Lett. 2014;3(10):A99–A101.
  • Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources. 2003;119–121:171–174.
  • Kim J-H, Myung S-T, Yoon CS, et al. Comparative study of LiNi 0.5 Mn 1.5 O <sub>4 - δ and LiNi 0.5 Mn 1.5 O 4 cathodes having two crystallographic structures:  fd 3̄ m and P 4 3 32. Chem Mater. 2004;16(5):906–914.
  • Sakakura M, Suzuki Y, Yamamoto T, et al. Low-resistive LiCoO 2 /Li 1.3 Al 0.3 Ti 2 (PO 4) 3 interface formation by low-temperature annealing using Aerosol deposition. Energy Technol. 2021;9(5):2001059.
  • Motoyama M, Iwasaki H, Sakakura M, et al. Synthesis of LiCoO 2 particles with tunable sizes by a urea-based-homogeneous-precipitation method. Int J Mater Res. 2020;111(4):347–355.
  • Inaba M, Iriyama Y, Ogumi Z, et al. Raman study of layeRed Rock-salt LiCoO2 and its electrochemical lithium deintercalation. J Raman Spectrosc. 1997;28(8):613–617.
  • Tian HK, Jalem R, Gao B, et al. Electron and ion transfer across interfaces of the NASICON-type LATP solid electrolyte with electrodes in all-solid-state batteries: a density functional theory study via an explicit interface model. ACS Appl Mater Interfaces. 2020;12(49):54752–54762.
  • Yamamoto Y, Iriyama Y, Muto S. 19th International Microsc Congress (IMC19. Sydney. 2018;2018:S5–433.
  • West WC, Whitacre JF, Lim JR. Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J Power Sources. 2004;126(1–2):134–138.
  • Kim KH, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J Power Sources. 2011;196(2):764–767.
  • Okumura T, Takeuchi T, Kobayashi H. All-solid-state batteries with LiCoO 2 -type electrodes: realization of an impurity-free interface by utilizing a cosinterable Li 3.5 Ge 0.5 V 0.5 O 4 electrolyte. ACS Appl Ene Mater. 2021;4(1):30–34.
  • Sakakura M, Mitsuishi K, Okumura T, et al. Fabrication of oxide-based all-solid-state batteries by a sintering process based on function sharing of solid electrolytes. ACS Appl Mater Interfaces. 2022;14(43):48547–48557.
  • Kishi H, Mizuno Y, Chazono H. Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys. 2003;42(Part 1, No. 1):1–15.
  • Hitz GT, McOwen DW, Zhang L, et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater Today. 2019;22:50–57.
  • Bates JB, Dudney NJ, Neudecker B. Thin-film lithium and lithium-ion batteries. Solid State Ion. 2000;135(1–4):33–45.
  • Yu X, Bates JB, Jellison JGE, et al. A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc. 1997;144(2):524–532.
  • Neudecker BJ, Dudney NJ, Bates JB. ‘Lithium‐Free’ thin‐film battery with in situ plated Li anode. J Electrochem Soc. 2000;147(2):517–523.
  • Sagane F, Shimokawa R, Sano H, et al. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J Power Sources. 2013;225:245–250.
  • Yamamoto T, Iwasaki H, Suzuki Y, et al. A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material. Electrochem Commun. 2019;105:106494.